Supply air nozzles are designed to supply air into rooms in applications requiring large throw distances and low noise levels. They are suitable for supplying either cold or warm air. They are made of anodised sheet aluminium. On request, they can be powder painted in any of the RAL scale colours. Air supply nozzles are supplied either as single components or assembled into blocks, which considerably increase throw distance.
Supply air nozzles

Supply air nozzles are designed to supply air into rooms in applications requiring large throw distances and low noise levels. They are suitable for supplying either cold or warm air. They are made of anodised sheet aluminium. On request, they can be powder painted in any of the RAL scale colours. Air supply nozzles are supplied either as single components or assembled into blocks, which considerably increase throw distance.

Supply air nozzles VŠ-1
VŠ-1 supply air nozzles are of a fixed construction. They are supplied either as single components or assembled into blocks.

Supply air nozzles VŠ-4
VŠ-4 supply air nozzles are adjustable. The air jet direction can be adjusted either manually or by means of a motor drive, within a ±30° range.

Supply air nozzles VŠ-5
VŠ-5 supply air nozzles can be adjusted in the same way as VŠ-4. Supply air nozzle is integrated into the housing and does not protrude into the room.

Software: KLIMA ADE 5.4

The air supply nozzle calculation and selection software package comprises:
- throw velocity calculation models, developed based on measurements,
- heating and cooling condition models,
- calculation of technical specifications of air supply on one wall or on opposite walls,
- calculation of throw velocities for all VŠ-4 and VŠ-5 sizes.

Software: KLIMA ADE 5.4
Content

<table>
<thead>
<tr>
<th>SUPPLY AIR NOZZLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply air nozzles VŠ-1</td>
<td>256</td>
</tr>
<tr>
<td>Supply air nozzles VŠ-4</td>
<td>263</td>
</tr>
<tr>
<td>Supply air nozzles VŠ-5</td>
<td>269</td>
</tr>
</tbody>
</table>

Legend of symbols

- **AI**: Element is made of aluminium profiles, aluminium sheet or aluminium casting.
- **St**: Element is made of steel sheet.
- **RAL 9010**: Element is powder painted in standard RAL 9010 colour. Other desired colour is to be specified in the order.
- **Shady symbol**: Shady symbol means possibility of optional material, surface protection, motor version, ...
- **Element is intended to be built in the floor.**
- **Element is intended to be built in the wall.**
- **Element is intended to be built in the ceiling or in the wall.**
- **Element is suitable for the supply of cool air (cooling).**
- **Element allows regulation by electric motor (Belimo electric motors).**
- **Element is intended for air filtration. The filter of class ... is built in.**
- **The possibility of the automatic selection and calculation of the technical characteristics of grilles and diffusers in regard to the given conditions with the assistance of the Klima ADE program.**
- **The element is made of stainless sheet steel AISI 304.**
Supply air nozzles

Supply air nozzles VŠ-1

Application
VŠ-1 supply air nozzles are designed to supply air into rooms in applications requiring large throw distances and low noise levels. By arranging nozzles in blocks, the throw distance is considerably increased. In terms of materials and shape, blocks of air nozzles can be designed according to to fit well into room decoration.

Description
VŠ-1 supply air nozzles are of a fixed construction. They are made of anodised sheet aluminium. On request, they can be powder painted in any of the RAL scale colours.

Sizes and dimensions
VŠ-1 supply air nozzles are available in six sizes: from 20 to 250.

Installation methods
Size 20 and 50 VŠ-1 supply air nozzles are installed by gluing, while size 100, 140, 160 and 250 air supply nozzles are installed by means of rivets or 3.5 mm self-tapping screws. VŠ-1 supply air nozzles are supplied without mounting holes.

<table>
<thead>
<tr>
<th>Size</th>
<th>φd</th>
<th>φD1</th>
<th>φD2</th>
<th>b</th>
<th>φC</th>
<th>Aef (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>40</td>
<td>52</td>
<td>60</td>
<td>46</td>
<td>0.00025</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>100</td>
<td>116</td>
<td>100</td>
<td>108</td>
<td>0.00181</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>200</td>
<td>220</td>
<td>160</td>
<td>210</td>
<td>0.00785</td>
</tr>
<tr>
<td>140</td>
<td>140</td>
<td>250</td>
<td>290</td>
<td>250</td>
<td>270</td>
<td>0.01496</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>250</td>
<td>290</td>
<td>250</td>
<td>270</td>
<td>0.01960</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>400</td>
<td>440</td>
<td>350</td>
<td>420</td>
<td>0.04830</td>
</tr>
</tbody>
</table>

Ordering example
Supply air nozzle type: VŠ-1
Size: 100
Pcs: 25
Supply air nozzles

Technical data of single supply air nozzles VŠ-1

Supply air nozzle is considered as a single unit when the distance between two adjacent nozzles is $A \geq 10d$.

The most significant data in respect of an air supply nozzle characterization is the turbulence number m.

Throw distance of single supply air nozzle:

\[L = \frac{d}{m} \times \frac{d}{0.128} \times \frac{v_0}{v_l} \times 0.63 \ (m) \]

Method of determining induction:

\[i = 2m \frac{L}{d} \]

<table>
<thead>
<tr>
<th>Size</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.180</td>
</tr>
<tr>
<td>50</td>
<td>0.155</td>
</tr>
<tr>
<td>100</td>
<td>0.150</td>
</tr>
<tr>
<td>140</td>
<td>0.145</td>
</tr>
<tr>
<td>160</td>
<td>0.145</td>
</tr>
<tr>
<td>250</td>
<td>0.150</td>
</tr>
</tbody>
</table>

Definition of symbols

- v_0 (m/s): Discharge air velocity (velocity in the air jet core)
- Q_S (m³/s): Air flow rate per single nozzle
- A_{ef} (m²): Effective nozzle cross-section area
- v_l (m/s): Desired velocity at the throw distance L
- L (m): Desired throw distance
- m: Supply air nozzle turbulence number
- Δt_L (°C): Maximum difference between the jet core temperature and the room temperature
- Δt_z (°C): Temperature difference between supply air and room air
- i: Induction, i.e. the ratio between the total air jet flow rate and supply air flow rate
- A (m): Distance between nozzles
- g (m/s²): Acceleration of gravity
- d (m): Nozzle diameter
- T_p (°K): Room air absolute temperature

VENTILATING GRILLES, VENTILATING VALVES
VENTILATING GRILLES, VENTILATING VALVES
CIRCULAR DIFFUSERS, SQUARE DIFFUSERS
SWIRL DIFFUSERS, VARIABLE SWIRL DIFFUSERS
SLOT DIFFUSERS, ROUND DUCT DIFFUSERS
AIR DISPLACEMENT UNITS
SUPPLY AIR NOZZLES
EXTERNAL ELEMENTS
AIR FLOW CONTROL UNITS
SOUND ATTENUATORS, SOUND ATTENUATING LOUVRES
Calculation of the throw distance as a function of the temperature quotient:

In non-isothermal conditions (temperature difference between the supply air and room air) the air jet rise or drop y and temperature quotient shall be considered:

$$\frac{\Delta t_1}{\Delta t_2}$$

$$y = 0.33d \cdot m \cdot \frac{\frac{L}{d}}{Ar} \quad (m)$$

where $Ar = Archimedean$ number

$$Ar = \frac{d \cdot \Delta t \cdot g}{V^2 \cdot T_0}$$

Temperature quotient:

$$\frac{\Delta t_1}{\Delta t_2} \approx \frac{3}{2} \cdot \frac{d}{\Delta t_2} \quad \text{oz.}$$

$$\Delta t = \frac{3}{2} \cdot \frac{d}{\Delta t_2} \cdot \Delta t_2 \quad (^\circ C)$$

Sound power level diagram
Arrangement of supply air nozzles in blocks
When large throw distance or greater air flow rate is required, supply nozzles are installed arranged in blocks.

Definition of symbols

- \(Q_i (m^3/s)\) Q\(_{i\times n}\) supply air flow rate
- \(n\) Number of nozzles in a block
- \(Q_2 (m^3/s)\) Air flow rate at \(x_2\)
- \(v_2 (m/s)\) Air velocity at \(x_2\)
- \(b (m)\) Air jet width at \(x_2\)
- \(h (m)\) Air jet height at \(x_2\)
- \(L (m)\) Throw distance of the combined air jet
- \(L_{col} (m)\) Total throw distance
- \(Q_{cel} (m^3/s)\) Air flow rate at the throw distance \(L\)

 Isothermal conditions – rectangular array nozzle block
The indicated calculation method is applicable in isothermal conditions and for rectangular blocks of nozzles where \(b \times h < 12\). In a case of non-isothermal conditions, the air jet rise or drop due to the temperature difference has to be calculated.

Calculation method applicable to isothermal conditions and a rectangular array nozzle blocks \(b / h \leq 12\)

1. Distance from the outlet to the joint air jet:
\[
x_2 = 9.5 \cdot \left(A - \frac{d}{2} \right) \text{ (m)}
\]

2. Increase of air flow rate due to induction:
\[
Q_2 = \frac{2x_2}{x_0} \cdot Q_0 \left(\frac{m^3}{s} \right)
\]

3. Widening of air jet up to the distance \(x_2\):
\[
b = b' + 0.2x_2 \text{ (m)}
\]
\[
h = h' + 0.2x_2 \text{ (m)}
\]

4. Air jet velocity at \(x_2\):
\[
v_2 = \frac{Q_2}{F_2} \text{ (m/s)}
\]

5. Air jet velocity at the throw distance \(L\):
\[
v_i = \frac{v_2 \cdot d \cdot \sqrt{n}}{m \cdot L} \text{ (m/s)}
\]

6. Throw distance:
\[
L = \frac{v_2 \cdot d \cdot \sqrt{n}}{m \cdot v_i} \text{ (m)}
\]

7. Total throw distance:
\[
L_{col} = L + X_2 \text{ (m)}
\]

8. Air supply nozzle block induction is calculated as follows:
\[
i = \frac{Q_{cel}}{Q_{cel}} \quad Q_{cel} = 2Q_0 \cdot \frac{v_2 \cdot d \cdot \sqrt{n}}{m \cdot v_i}
\]
Isothermal conditions - square or circular array nozzle block
In the cases of nozzle blocks not installed in a rectangular array, the adjustments indicated on the left shall be applied.

Non-isothermal conditions
In non-isothermal conditions, the air jet rise or drop is calculated according to formulas indicated on the left.

Calculation method applicable to isothermal conditions and a square or circular array nozzle blocks:
1. Square arrangement of supply air nozzles:
 \[b = h = a \]
 \[F_2 = a^2 \]

2. Circular arrangement of supply air nozzles:
 \[b = h = d \]
 \[F_2 = \pi \cdot d^2 / 4 \]
 \[m = 0.20 \]

Calculation method applicable in non-isothermal conditions

Archimedean number (Ar)

1. Rectangular arrangement of supply air nozzles:
 \[y = 0.4 \cdot h \cdot \sqrt{m \cdot Ar} \cdot \left(\frac{L}{m} \right)^3 \]

2. Circular arrangement of supply air nozzles:
 \[y = 0.33 \cdot m \cdot Ar \cdot \left(\frac{L}{m} \right)^3 \ (m) \]

The indicated calculation method provides an approximate result. In cases of sophisticated architectural demands, the designer is invited to consult our factory team for detailed design information. A model test can be carried out on request.
Pressure drop diagrams

Pressure drop

\[p_\text{st} = 1.05 \frac{\rho}{2} v_0^2 \] (Pa)

\(\rho \) - air density (kg/m³)

Definition of symbols

- \(g \) (m/s) - Acceleration of gravity
- \(d \) (m) - Circular air jet diameter at \(x_2 \)
- \(h \) (m) - Rectangular air jet height at \(x_2 \)
- \(\Delta T \) (°C) - Temperature difference between supply air and room air
- \(T_p \) (°K) - Absolute room air temperature
- \(m \) - Turbulence number (\(m=0.25 \) for rectangular block and \(m=0.20 \) for circular block)
- \(L \) (m) - Throw distance
Calculation example

Required air flow rate into the hall:
15000 m³/h.

Room temperature:
\(t_r = 20 \, ^\circ C \)

Supply air temperature:
\(t_s = 26 \, ^\circ C \)

Air velocity in occupied zone:
\(v_i = 0.5 \, m/s \)

Solution:

52 pcs individually installed air supply nozzles VS-1 of size 100 are required. Air flow rate per each air supply nozzle is calculated as follows:

\[Q_s = \frac{15000}{52} = 292 \, m^3/h = 0.08011 \, m^3/s \]

1. Supply air velocity:

\[v_0 = \frac{Q_s}{A_e} = \frac{0.08011}{0.00785} \approx 10.2 \, m/s \]

2. Throw distance:

\[L = \frac{0.1}{0.15} + \frac{0.1}{0.128} \left[\frac{10.2}{0.5} - 0.63 \right] = 16 \, m \]

3. Archimedean number:

\[Ar = \frac{(0.1) \times (-6) \times (9.81)}{(10.2)^2 \times 293} = \frac{-5.885 \times 10^4}{3.047 \times 10^4} \]

\[= -1.931 \times 10^4 \]

4. Air jet rise:

\[y = 0.33 \times 0.1 \times 0.15 \times (-1.931 \times 10^4) \times \left[\frac{16}{0.1} \right]^3 \]

\[= -3.9 \, m \]

5. Temperature quotient:

\[\frac{\Delta t_s}{\Delta t_0} = \frac{3}{4} \times \frac{0.1}{0.15 \times 16} = 0.031 \]

6. Pressure drop:

\[p_s = 1.05 \times \left(\frac{1.15}{2} \right)^2 (10.2)^2 = 62.7 \, Pa \]

7. Self-noise level:

Determined from the diagram at
\(v_0 = 10.2 \, m/s \)
\(L_{wA} = 25 \, dB \, (A) \)
Supply air nozzle VŠ-4

Application
VŠ-4 supply air nozzles are suitable for supplying either cold or warm air into rooms in applications requiring large throw distances and low noise levels. By arranging several nozzles in a block, the throw distance can be increased accordingly. Several installation methods are applicable.

Description
Supply air nozzles VŠ-4 are adjustable. The air jet injection can be adjusted either:
• manually within ±30° in all directions or
• with electromotor within ±30° in vertical or horizontal direction.

Adjusting depends on temperature oscillation. VŠ-4 supply air nozzles are made of anodised sheet aluminium. On customer’s request, they can be powder painted in any of the RAL scale colours.

Sizes and dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>(\Phi D)</th>
<th>(\Phi B)</th>
<th>(\Phi c)</th>
<th>(e)</th>
<th>(L1)</th>
<th>(L2)</th>
<th>(L3)</th>
<th>(\Phi g)</th>
<th>(n)</th>
<th>(A_{ij} (m^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>80</td>
<td>175</td>
<td>196.5</td>
<td>7</td>
<td>43</td>
<td>96</td>
<td>139</td>
<td>6.5</td>
<td>3</td>
<td>0.004778</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>215</td>
<td>236.5</td>
<td>7</td>
<td>51</td>
<td>115</td>
<td>166</td>
<td>6.5</td>
<td>3</td>
<td>0.007543</td>
</tr>
<tr>
<td>125</td>
<td>125</td>
<td>265</td>
<td>286.5</td>
<td>7</td>
<td>52</td>
<td>142</td>
<td>194</td>
<td>6.5</td>
<td>3</td>
<td>0.011882</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>340</td>
<td>361.5</td>
<td>9</td>
<td>75</td>
<td>180</td>
<td>255</td>
<td>6.5</td>
<td>4</td>
<td>0.019607</td>
</tr>
<tr>
<td>220</td>
<td>220</td>
<td>425</td>
<td>446.5</td>
<td>9</td>
<td>95</td>
<td>219</td>
<td>314</td>
<td>6.5</td>
<td>4</td>
<td>0.037325</td>
</tr>
</tbody>
</table>

\(n \) – number of fixing boreholes
Installation methods
- Mounting on a circular duct (marking D)
- Mounting on a tube (marking E)

<table>
<thead>
<tr>
<th>Size</th>
<th>ExE</th>
<th>Dc,mm</th>
<th>ΦA</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>200</td>
<td>200</td>
<td>158</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>240</td>
<td>250</td>
<td>198</td>
<td>40</td>
</tr>
<tr>
<td>125</td>
<td>290</td>
<td>300</td>
<td>248</td>
<td>40</td>
</tr>
<tr>
<td>160</td>
<td>365</td>
<td>380</td>
<td>313</td>
<td>40</td>
</tr>
<tr>
<td>220</td>
<td>450</td>
<td>500</td>
<td>398</td>
<td>65</td>
</tr>
</tbody>
</table>

When ordering, please specify Φdc.

Ordering key

VŠ-4/D/B Size 125

- **VŠ-4/E**

- **Standard sizes** 80, 100, 125, 160, 220
- **R** Manual adjustment
- **B4** Motor Belimo NM 24A
- **B5** Motor Belimo NM 230A
- **B6** Motor Belimo NM 24A SR
- **J4** Motor Joventa DAS 1
- **J5** Motor Joventa DAS 2
- **J6** Motor Joventa DMS 1.1

- **D** Mounting on a round duct
- **E** Mounting on a tube
Supply air nozzles

Definition of symbols

- \(L \) (m): Throw distance in isothermal condition
- \(\alpha_H \) (°): Set angle in cooling mode
- \(\alpha_T \) (°): Set angle in heating mode
- \(C \) (m): Horizontal distance between the nozzle and the two air jets collision point
- \(H \) (m): Height of the nozzle above the occupied zone
- \(H_2 \) (m): Virtual vertical distance between the nozzle and the two air jets collision point at isothermal air supply
- \(H_{max} \) (m): Max. depth of air throw (only at vertical supply)
- \(H_1 \) (m): Vertical distance between the occupied zone and the two air jets collision point
- \(Y \) (m): Air jet deflection as a function of blow temperature difference
- \(G \) (m): Vertical distance between the air jet deflection point and the nozzle
- \(\bar{v}_{H1} \) (m/s): Average air velocity in the occupied zone \(H_1 \)
- \(\bar{v}_L \) (m/s): Average air velocity at the two air jets collision point \(L \)
- \(d_l \) (K): Temperature difference between the supply air and the room air
- \(d_{l1} \) (K): Temperature difference between the supply air at the entry in the occupied zone and the room air
- \(d_{l2} \) (K): Temperature difference between the supply air at the distance \(L \) and the room air
- \(\Delta p \) (Pa): Total air pressure drop
- \(L_{WA} \) (dB(A)): Sound power level
Diagram 1: Velocity in the air jet core and throw depth

Diagram 2: Air jet deflection
Calculation example
with regard to different air supply angles

Cooling (α_H)

a) Select air supply angle (α_H):

b) Calculate distance $L = \frac{C}{\cos(\alpha_H)}$ (table 1)

c) Calculate height $H_2 = \tan(\alpha_H) \times C$ (table 1)

d) Select velocity v_L from diagram 1

e) Select air jet deflection y from diagram 2

f) Calculate height H_1: $H_1 = H + H_2 - y$

g) Select velocity v_{H1} from diagram 3.

h) Select temperature quotient from diagram 4

$$\Delta t_{H1} = \frac{\Delta t_{H1}}{\Delta t_Z} \text{ or } \frac{\Delta t_L}{\Delta t_Z}$$

$\Delta t_{H1} = \frac{\Delta t_{H1}}{\Delta t_Z}$

$\Delta t_L = \frac{\Delta t_L}{\Delta t_Z}$

Apply diagram 1 and 3.

Heating (α_T)

a) Select velocity v_L.

b) Select distance L from diagram 1.

c) Establish air jet deflection y from diagram 2.

d) Calculate air supply angle α_T.

e) Select temperature quotient from diagram 4

In the case of the distance between nozzles smaller than $0.14 \times C$, velocity v_L and Δt_L are increased by a factor of 1.5
Example

Two nozzles are installed at a distance of 18 m one from another and 7 m above the floor.

Air flow rate:
\(V = 600 \text{ m}^3/\text{h} \) (per nozzle)
\(\Delta t_z = -6 \text{K (summer)} \)
\(\Delta t_z = +4 \text{K (winter)} \)
Selected: nozzle VS-4, size 160

Cooling: \((-\alpha _H) = 10^\circ\)
- a) Distance \(L = \frac{c}{\cos \alpha _H} = \frac{9}{0.996} = 9.14 \text{ m (table 1)}\)
- b) Height \(H_2 = \tan(\alpha _H) \times 9 = 0.176 \times 9 = 1.578 \text{ m (table 1)}\)
- c) Select velocity \(v_L \) from diagram 1: \(v_L = 1.05 \text{ m/s} \)
- d) Establish air deflection \(y \) from diagram 2: \(y = -0.6 \text{ m} \)
- e) Calculate height \(H_1 = H_2 + 1.578 - 0.6 = 6.187 \text{ m} \)
- f) Select velocity \(v_{H1} \) from diagram 3: \(v_{H1} = 0.08 \text{ m/s} \)
- g) Select temperature quotient from diagram 4: \(\Delta t_{H1} = \frac{\Delta t_{H1}}{\Delta t_z} \times \Delta t_z = 0.048 \times (-6) = -0.288 \text{ K} \)

Heating: (1)
- a) Select velocity \(v_L: v_L = 0.71 \text{ m/s} \)
- b) Establish distance \(L \) from diagram 1: \(L = 13.5 \text{ m} \)
- c) Establish air deflection \(y \) from diagram 2: \(y = +1.3 \text{ m} \)
- d) Calculate air supply angle \(\alpha _t \): \(\sin(\alpha _t) = \frac{G}{L} = \frac{4}{13.5} = 0.3926 \Rightarrow \alpha _t = 23^\circ \)
- e) Select temperature quotient from diagram 4:

\[
\Delta t_e = \frac{\Delta t_1}{\Delta t_2} \times \Delta t_2 = 0.055 \times 4 = 0.22 \text{ K}
\]

f) From diagram 5, sound power level \(L_{W0} \) at the source can be established:
\(L_{W0} = 27 \text{ dB(A)} \)
\(\Delta \rho _0 = 43 \text{ Pa} \)

Table 1

<table>
<thead>
<tr>
<th>(\alpha _H)</th>
<th>(\cos(\alpha _H))</th>
<th>(\tan(\alpha _H))</th>
<th>(\alpha _t)</th>
<th>(\sin(\alpha _t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.996</td>
<td>0.0875</td>
<td>5</td>
<td>0.087</td>
</tr>
<tr>
<td>10</td>
<td>0.985</td>
<td>0.176</td>
<td>10</td>
<td>0.174</td>
</tr>
<tr>
<td>15</td>
<td>0.966</td>
<td>0.268</td>
<td>15</td>
<td>0.260</td>
</tr>
<tr>
<td>20</td>
<td>0.940</td>
<td>0.364</td>
<td>20</td>
<td>0.342</td>
</tr>
<tr>
<td>25</td>
<td>0.906</td>
<td>0.466</td>
<td>25</td>
<td>0.423</td>
</tr>
<tr>
<td>30</td>
<td>0.866</td>
<td>0.577</td>
<td>30</td>
<td>0.500</td>
</tr>
</tbody>
</table>
Supply air nozzle VŠ-5

Application
Air supply nozzles VŠ-5 are applied in the supply of cold or warm air in rooms where long throw distances and low noise operation are required. By combining individual nozzles into a block, the throw distance is increased proportionally. There is a choice of several mounting methods.

Description
Supply nozzles VŠ-5 are adjustable. The air jet can be adjusted:

- manually, in all directions, within a ±30° range
- by means of an electric motor or thermostat element, in horizontal and vertical direction, within a ±30° range.

The nozzle setting depends on the supplied air temperature.

The supply nozzle is integrated in a housing, thus even with the largest size, 400, it does not project into the room by more than 45 mm (see dimension L2 as a function of the setting angle 0°).

Supply nozzles VŠ-5 are made of galvanised exoval treated aluminium sheet. On customer’s request, nozzles can be powder painted in any of the RAL scale colours.

Sizes and dimensions
L2* ... corresponds to the setting angle 0°

<table>
<thead>
<tr>
<th>Size</th>
<th>φDo</th>
<th>φDx</th>
<th>φD4</th>
<th>L1</th>
<th>L2*</th>
<th>Aν (m²)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>98</td>
<td>146</td>
<td>40</td>
<td>87</td>
<td>-5</td>
<td>0.0013</td>
<td>0.20</td>
</tr>
<tr>
<td>125</td>
<td>123</td>
<td>171</td>
<td>64</td>
<td>91</td>
<td>-1</td>
<td>0.0032</td>
<td>0.27</td>
</tr>
<tr>
<td>160</td>
<td>158</td>
<td>206</td>
<td>82</td>
<td>98</td>
<td>11</td>
<td>0.0053</td>
<td>0.3</td>
</tr>
<tr>
<td>200</td>
<td>198</td>
<td>252</td>
<td>108</td>
<td>108</td>
<td>19</td>
<td>0.0092</td>
<td>0.55</td>
</tr>
<tr>
<td>250</td>
<td>248</td>
<td>312</td>
<td>136</td>
<td>121</td>
<td>29</td>
<td>0.0145</td>
<td>0.77</td>
</tr>
<tr>
<td>315</td>
<td>313</td>
<td>377</td>
<td>174</td>
<td>145</td>
<td>35</td>
<td>0.0238</td>
<td>1.12</td>
</tr>
<tr>
<td>400</td>
<td>398</td>
<td>472</td>
<td>230</td>
<td>171</td>
<td>45</td>
<td>0.0415</td>
<td>1.64</td>
</tr>
</tbody>
</table>
Mounting methods:

- **Standalone nozzle (V)**
 A nozzle without extensions is mounted by means of three bolts from its face. The mounting opening dimension is $\Phi Do+10\text{mm}$.

- **Mounting with extensions (designations D,K,E)**
 Visible nozzle mounting by means of an extension. The nozzle is supplied with the extension already installed. The installation technician mounts the extension to a round or rectangular duct by means of rivets or self-tapping screws. On customer’s request, the extension can be powder painted in any of the RAL scale colours. The duct diameter ΦDc shall be specified in the order.
 The extension is mounted separately. A standard dimension duct is attached to the extension connector.

- **Mounting to a round duct (D)**
- **Mounting to a rectangular duct (K)**
- **Mounting with a connector to a duct (E)**
Mounting of a nozzle on the extension

The nozzle is fixed into the extension on the side face, thus there are no bolts on its face side.

<table>
<thead>
<tr>
<th>Size</th>
<th>(\Phi_{Do})</th>
<th>(\Phi_{Dz})</th>
<th>(\Phi_{Da})</th>
<th>(\Phi_{Da+20})</th>
<th>(L_3)</th>
<th>(\Phi_{Dc \ min})</th>
<th>(l_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>98</td>
<td>146</td>
<td>118</td>
<td>138</td>
<td>90</td>
<td>125</td>
<td>63</td>
</tr>
<tr>
<td>125</td>
<td>123</td>
<td>171</td>
<td>143</td>
<td>163</td>
<td>95</td>
<td>150</td>
<td>63</td>
</tr>
<tr>
<td>160</td>
<td>158</td>
<td>206</td>
<td>178</td>
<td>198</td>
<td>100</td>
<td>180</td>
<td>63</td>
</tr>
<tr>
<td>200</td>
<td>198</td>
<td>252</td>
<td>224</td>
<td>244</td>
<td>110</td>
<td>224</td>
<td>83</td>
</tr>
<tr>
<td>250</td>
<td>248</td>
<td>312</td>
<td>284</td>
<td>304</td>
<td>120</td>
<td>315</td>
<td>78</td>
</tr>
<tr>
<td>315</td>
<td>313</td>
<td>377</td>
<td>349</td>
<td>369</td>
<td>150</td>
<td>355</td>
<td>78</td>
</tr>
<tr>
<td>400</td>
<td>398</td>
<td>472</td>
<td>444</td>
<td>464</td>
<td>170</td>
<td>450</td>
<td>73</td>
</tr>
</tbody>
</table>

Adjustment methods:
- Manual adjustment in all directions, within a ±30° (R)

Electric motor adjustment, for standalone mounting

- B4 motor Belimo NM 24A
- B5 motor Belimo NM 230A
- B6 motor Belimo NM 24A SR
- J4 motor Joventa DAS 1
- J5 motor Joventa DAS 2
- J6 motor Joventa DMS 1.1

Variants D, K and E available.

With all the variants, the \(L_3 \) dimension equals 250 mm.
Adjustment methods:
• Electric motor adjustment, internal drive
 B1 LH motor Belimo LH 24A 100
 B2 LH motor Belimo LH 230A 100
 B3 LH motor Belimo LH 24A SR
 B4 LH motor Belimo LH 24A MP100
Variants D, K and E available.
With all the variants, the L3 dimension equals 550 mm. Variant is available in following sizes: 160, 200, 250, 315 and 400.

• Thermostatic regulation
 Available designs: D, K or E.
 The dimension L3 is 300 mm and is the same for all sizes. The designs are compatible with the sizes 200, 250, 315 and 400.

Advantages
• Automatic regulation using a thermostatic head
• Requires no motor or installation required for motor power supply and control

Ordering key

VŠ-5/D/R/C0 Size 160

Standard sizes 100, 125, 160, 200, 250, 315, 400
C0 Eloxal treated, in the original Al colour (C0)
RAL Standard RAL 9010 (30% gloss)
(on customer’s request, any RAL scale colour)
R Manual adjustment
B4 Motor Belimo NM 24A standalone mounting
B5 Motor Belimo NM 230A standalone mounting
B6 Motor Belimo NM 24A SR standalone mounting
J4 Motor Joventa DAS 1 standalone mounting
J5 Motor Joventa DAS 2 standalone mounting
J6 Motor Joventa DMS 1.1 standalone mounting
B1 LH Motor Belimo LH 24A 100
B2 LH Motor Belimo LH 230A 100
B3 LH Motor Belimo LH 24A SR
B4 LH Motor Belimo LH 24A MP100
TR Thermostatic regulation*
V Nozzle without extension – mounting with three bolts
D mounting to a round duct (specify Dc in the order)
K mounting to a rectangular duct
E mounting with a connector to a duct

* Variant is available in following sizes: 200, 250, 315 and 400.
Air flow (l/s)

<table>
<thead>
<tr>
<th>Air flow (l/s)</th>
<th>Air velocity in the air jet centre and throw distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>700</td>
<td>70</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
</tr>
</tbody>
</table>

The right for technical changes reserved.