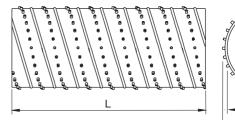


Description

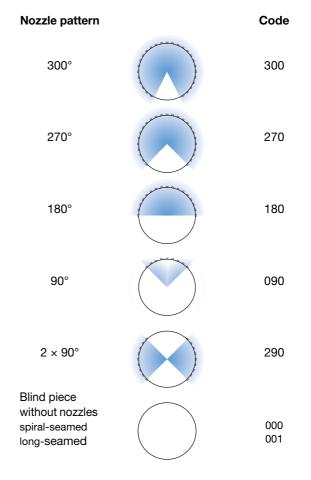
Ventiduct is an air distribution system consisting of spiralseamed circular ducts that is equipped with a large number of small nozzles inserted into the duct wall. They are supplied in five sizes from ø200 mm to ø500 mm and with various nozzle patterns, which should be chosen according to the task in hand.

Maximum standard length is 3,000 mm. The ducts have a raised protective cover to prevent the nozzles becoming deformed during transport. Ventiduct ducts can be supplied in hot-galvanised or powder-coated versions. The system should be primarily used for the supply of cooled air.

- Large cooling effect
- Large dynamic range
- Large induction rate
- Short throw
- Discrete diffuser design
- Easy to install


Cross-section of nozzle duct

Order code


Product	VSR	aaa	bbb	cccc	d/e
Туре					
Ød					
Nozzle pattern					
Length/no. of parts					
Finish					
0 Galvanised					
1 Powder coated					
		•			

Dimensions

Ød	Ød1	L	Weight
mm	mm	mm	kg
200	212	3000	4,5
250	262	3000	5,4
315	327	3000	6,9
400	412	3000	8,6
500	512	3000	10,9

The blind piece is a specially made spiral-seamed pipe that resembles ventiduct in design, as it has no actual nozzles.

Available in the same length as ordinary nozzle ducts.

Alternatively long-seamed pipes can be used, which creates an attractive contrasting effect.

407

Dispersal patterns

With Ventiduct nozzle ducts, various flow conditions can be achieved in the room. The downward supply of air always creates the greatest air speeds in the occupied zone and is therefore used mostly in industrial ventilation. The choice between air being supplied horizontally or upwards depends on the required form of flow.

Upward supply air

When cooled air is supplied upwards, the cool air mixes with the warmer room air close to the blowing ducts. The blown air typically covers a vertical area of 2-4 metres below the ducts. At greater distances between the blowing ducts, the blown air flows behind in a displacement flow further out in the room.

Depending on the required volume flow, a nozzle pattern of between 90° and 300° is used.

Downward supply air

When air is supplied downwards, the air speeds in the occupied zone are increased by the thermal forces (by cooling) and by the dynamic forces (blowing speed). This can result in quite high air speeds in the occupied zone, which is not acceptable for traditional comfort ventilation. However, blowing can be recommended if a stable downward flow of air is required, and if increased air speeds in the occupied zone are acceptable. This could, for example, be desirable for industrial assignments. A nozzle pattern between 90° and 300° is used, depending on the volume flow required.

Horizontal supply air

When air is supplied horizontally, air jets are formed, creating a mixed flow in the room. Depending on the various parameters, maximum air speeds occur in the occupied zone due to the thermal load, air jet speeds or a combination of both. When low blowing speeds are being used (low volume flow or large ducts/nozzle patterns) the form of the flow approximates a form of low impulse blowing, as with blowing upwards. Horizontal blowing can be used in locations where there is a deliberate demand for a flow of air throughout the premises in accordance with the mixing principle, and therefore where an upward supply is not being used.

Dispersal patterns

Recommended working areas for Ventiduct

The values stated are for guidance only and should be used with care, as incoming volume flow, cooling temperature, duct design and air pattern all have a great deal of influence on the resulting speed in the occupied zone. For more detailed calculations, Lindab will be happy to carry out a computer calculation based on an actual installation.

Air pattern	Up	Down	Horizon- tal
Installation height [m] *	2,5–5,0	3,0–8,0	2,5–5,0
Min. distance from ceiling [m] **	0,2	0,1–0,2	0,1
∆t (t ₁ - t _r) [K]	-1–10	-1–6	-1–8

* Distance from floor to lower edge of duct

** Distance from upper edge of duct to ceiling must be maintained to avoid dirtying the ceiling

Technical data

Max. volume flow per metre pipe (m³/h)

Nozzle pattern					
Dim	90 °	180°/2×90°	270 °	300 °	
200	45	95	140	155	
250	60	115	175	195	
315	75	150	220	245	
400	95	190	280	315	
500	115	235	350	390	

Max. total duct length (m)

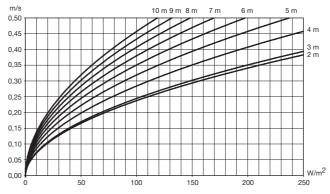
Nozzle pattern						
Dim	90 °	180°/2×90°	270 °	300 °		
200	14	7	5	4		
250	17	8	6	5		
315	21	11	7	6		
400	27	14	9	8		
500	34	17	11	10		

Sound effect level L_w (dB) = $L_{WA} + K_{ok}$

Dim	125	250	500	1K	2K	4K	8K
200	-7	0	1	-6	-15	-21	-27
250	-5	1	-1	-5	-11	-18	-22
315	1	2	-2	-4	-11	-16	-19
400	-1	-1	-3	-4	-9	-14	-17
500	4	0	-3	-4	-9	-16	-14

Technical data

Speed in the occupied zone


The speed in the occupied zone is a result of air jet speeds and thermal air movements in the room. An exact calculation of the resulting speed in the living zone can be performed using a computer program (contact the sales department in Farum or Viby).

For upward supply the maximum speeds in the occupied zone are dependent on the temperature difference $t_i - t_r$. The best results are achieved by using maximum supply per metre pipe according to the table on the left. Depending on the thermal load (W/m^2) and the pipe length,

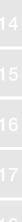
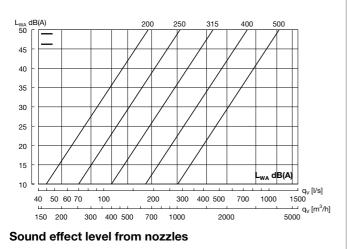
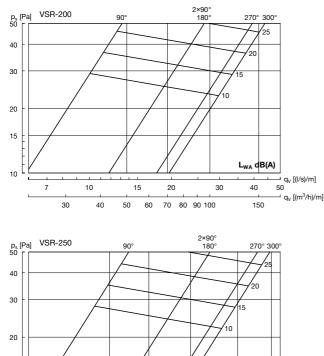

the maximum speed in the occupied zone is indicated as a rough estimate in the diagram below.

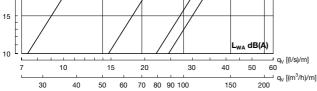
Diagram only applies to upward dispersal pattern with maximum volume flow per metre pipe: (distance to ceiling > $4 \times Ø$ d).

Distance between ducts

Please contact Lindab's sales department for further information.

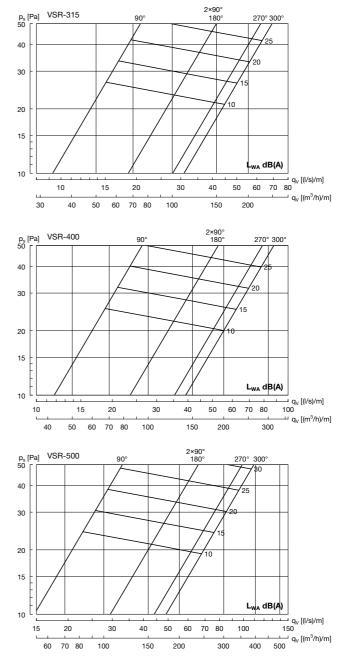



VSI

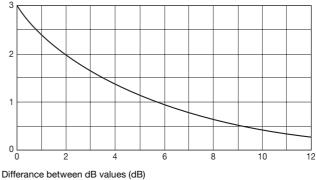

Pressure and sound

For calculation of the resulting sound power level from a ventiduct, add the sound power level from the nozzles (L_{WA} _{nozzles}) and the sound power level from the flow noise in the ventiduct (L_{WA} _{pipe}) logarithmically.

Flow noise in duct

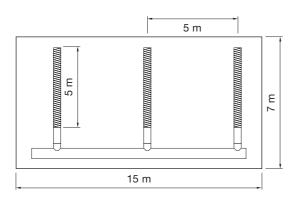


The sound levels from the nozzles apply for duct length 1 m


Correction for other duct lengths:

Length m	1,0	1,5	2,0	2,5	3,0	4,0	5,0	6,0
Corrections	0	2	3	4	5	6	7	8

Differance added to highest dB value (dB)


ance between dB values (dB)

Technical data

Calculation example

Required information:

Pressure loss: p_t [pa] Resulting sound level in the premises: L_p [dB(A) Max. speed in the occupied zone: v_{occ} [m/s]

Calculation based on catalogue values:

VSR-250, 270°	
Ceiling height	5,0 m
Installation height upper edge duct	4,5 m
Volume of the room:	525 m³
Hard room	(T _s ~ 1,9 s)
Volume flow	2400 m ³ /h (667 l/s)

The following can be determined from the diagrams on the previous page:

Pressure loss:	40 Pa
Sound effect: L _{WA pipe} :	41 dB(A)
Sound effect: L _{WA nozzle} :	22 dB(A)

Duct length of 5 m = > correction of + 7

Sound effect nozzles corrected: $L_{WA nozzles} = 22 + 7 = 29 \text{ dB}(A)$

Addition of sound levels from nozzles and duct:

Difference: 12 dB -> No addition Three identical sound sources: + 4,8 (see figure 25 in the Theory section) Sound effect L_{WA} for three pipes: 41+ 5= 46 dB(A)

Resulting sound level: The sound formula from page 46 in the Theory section is used

The absorption area of the room is determined by

 $A = 0,16 (V/T_{2}) = 0,16 (525/1,9) = 44 \text{ m}^{2} \text{ Sabine}$

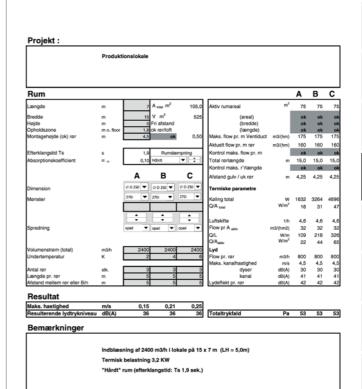

Based on *Figures 27 and 28 in the Theory section*, room attenuation D is determined:

Figure 27: $\sqrt{n}/\sqrt{Q} = 1,7$ for direction factor Q = 1 and n = 3

1.5 m above the floor is distance to pipe r = 4.5-0.25-1.5 = 2.75 m

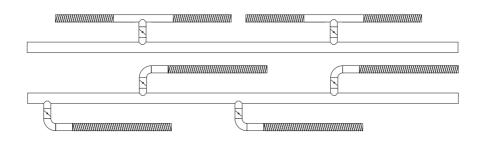
Figure 28: $r\sqrt{(n/Q)} = 4.7$ and A = 44 => D = 10 dB
Resulting sound pressure in the room:
$L_p = L_{WA}$ (for three pipes) – D = 46–10 = 36 dB(A)
$\Phi = 3.2 \text{ kW} => \Delta T = 3200/(667 \cdot 1.2) = -4 \text{ K}$
3200 W/(15 m x 5 m)
=> 43 W/m^2 in the actively ventilated area
Speed in the occupied zone according to the diagram:
43 W/m² and 5 m distance => $v_{_{occ}}$ = $\underline{0.21}$ m/s

Dimensiononig of Ventiduct

(Printout from the program)

Lindab is able to offer complete calculations for an actual installation using our internal dimensioning program (see printout above from the program). Based on the specification of a large number of variables, detailed information can be obtained on maximum speeds in the occupied zone, pressure loss and resulting sound levels in the premises for the overall installation. Variables that it is not possible to include in calculations based on the catalogue values.

Contact Lindab for further information.


Technical data

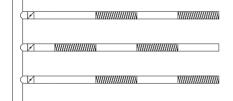
Examples of duct design

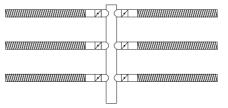
Ventiduct nozzle ducts can be installed in various ways. In high-ceilinged premises it is generally an advantage to install Ventiduct nozzle ducts as low down as possible (min. height above floor 2.5 m). This provides the greatest efficiency.

Cactus model

This solution is used for long, narrow rooms.

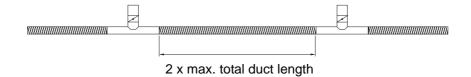
Exchange model


An ideal solution for long, narrow premises. This model provides an even distribution of supplied air.

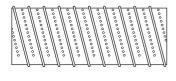

Fishbone model

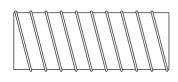
Ventiduct nozzle ducts stretch out from both sides of the main duct. It is recommended that an adjustment damper be used for accurate regulation of the air volume.

Fork model


Here the Ventiduct nozzle ducts are positioned on one side of a main or branch duct.

Line model


A simple solution that makes duct installation easier and minimises the number of adjustment dampers. The distance between the connection ducts is equivalent to twice Ventiduct's maximum length plus the two blind pieces.

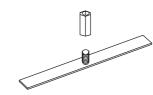


VSR

Components

VSR nozzle duct -Nozzle pattern 90 - 300 Ventiduct nozzle ducts over 3 m are supplied in multiple sections, e.g. one 4 m long duct is supplied

VSR 000


in two 2 m lengths.

Blind piece without nozzles, spiral-seamed.

VSR 001

Blind piece without nozzles, long-seamed (smooth)

Accessories

Mounting bracket for Ventiduct

OSB10 Threaded rod

TCPU T-piece

INV

DIRU Iris damper

DRU Balancing damper

NPU Spigot

ESU

ESUH End cap with handle

PSU Saddle

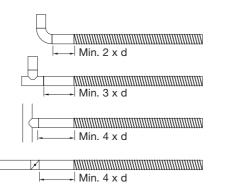
All accessories are supplied in the same material as the Ventiducts, and can also be supplied with a powder-coated finish.

Other components

Motorised shut-off and adjustment damper DCT and volume flow regulator VRU incl. accompanying silencer SLU.

Order code

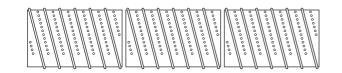
Product	INV	aaa
Туре		
Dimension Ød		


413

Technical data

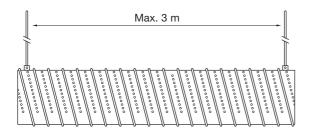
Building-in distance

Ventiducts should not be positioned too close to dampers, bends, T-pieces or other elements that may create turbulence and hence noise.


Straight duct sections should be installed between the Ventiducts and potentially disruptive components, as shown in the illustration below. Suitable duct sections are available.

Mounting

Assembly


The Ventiducts are individually packed in cardboard boxes at the factory, to minimise the risk of transport damage. The packaging is numbered to ensure that the ducts are mounted in the correct order, so that the spiral seam is continuous.

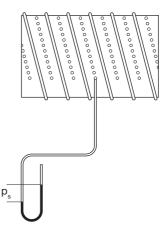
Suspension

If it is necessary to be able to dismantle the Ventiducts, e.g. for cleaning, we recommend using Lindab Transfer connections (see Lindab's Duct Systems catalogue)

IMPORTANT: In order to maintain the number sequence, the Ventiducts should be left in their packaging until mounting commences.

Maximum distance between suspension loops is 3 metres.

Balancing


Measuring of the airflow

The easiest way to measure the volume flow is to measure the nozzle pressure in the middle of the Ventiduct (see sketch).

To do this, attach the hose from the manometer to one of the nozzles. The static pressure $({\rm P}_{\rm s})$ in the duct can then be read.

Once you know the static pressure, you can read the volume flow per m/duct from the "Sound and pressure" diagram for the relevant duct dimension and nozzle pattern.

The total volume flow can thus be calculated by multiplying the relevant diagram value by the total active length of the Ventiduct.

