

Description, type overview

DF swirl diffusers are suitable for constant and variable supply air volume flow rates and for exhaust air. Air is distributed radially via conical diffusers on square and circular front panels with radial guide vanes as air deflection elements.

DF swirl diffusers ensure high induction with the room air immediately at the outlet. This quickly reduces the velocity of the flowing supply air and the temperature differentials. This also applies when heating or cooling a room with a temperature difference of -12 K between the room air and supply air. If the minimum volume flow rates are maintained in the area of application, there is never a risk of airflow coming off the ceiling when cooling a room. Air is deflected into the occupied zone by room walls and counterflows. Optimum air distribution is possible in rooms with heights of approximately 2.5 to 4 m, and is best achieved with swirl diffusers installed flush in ceilings.

DF swirl diffusers are made of galvanized sheet steel. A resilient extremely colour-fast and anti-static surface finish made of polyester and sintered at a high temperature has been applied to the front plates and funnel. With powdered coating in colour RAL 9010 (white) smooth glossy with 80 to 90% gloss level or in another RAL colour.

With low-turbulence connection elements for optimum air distribution with extremely low flow noise designed as special perforated plates for on-site connecting ducts and with reducers, also with ceiling clamping ring.

The plenum boxes made of galvanized sheet steel are optimised for swirl diffusers and low heights and are also available with powder coating. A lateral connecting piece is available as standard, in addition to dampers and special air deflector plates for optimum air distribution, especially for supply air. The volume flow can be adjusted without dismantling the swirl diffuser. With holes for suspensions and with concealed central fastening.

Type overview

Swirl diffuser DFR0 / DFQ0 / DFH0 / DFG0

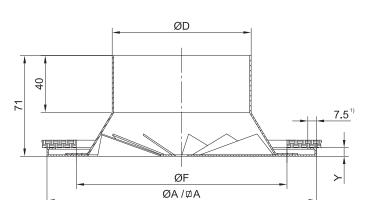
DF0
DF0 - L
DF0 - R
DF0 - RK
DF0 - K4
DF0 - K4 - D
DF0 - K4 - L
DF0 - K4 - DL

DF swirl diffusers

- satisfy the hygiene requirements according to VDI 6022-1, VDI 3803-1, DIN 1946-4 and DIN EN13779.
- are resistant to microbes, and therefore do not promote the growth of microorganisms (fungi, bacteria). This reduces the risk of infection for people and also the necessary cleaning and disinfection work!
- are **resistant to cleaning agents and disinfectants** and are suitable for use in hospitals and similar facilities!

e	Geprüfte Qualität	geprüft
HYG.d	Hygiene-Institut des Ruhrgebiets	
Ň.	Institut für Umwelthygiene und Toxikologie	
×	Nur gültig in Verbindung mit zugehörigem Zertifi	kat unter www.wildeboer.de!

Data sheet: Front plates


Circular front DFR0

Square front DFQ0

Square front DFH0 / DFG0

Central fastening with concealed screws M8x25:

Colour of swirl diffuser										
RAL 9010	Special colour RAL									
Colour of corresponding cap										
White	Black	Special colour								
RAL 9010	RAL 9017	RAL								

	Туре:	DFQ0		DFF	10	DFC	G 0	DFF	20	ØF	A _{free}	Application with supply air from:
Nominal size	ØD	⊿A	Υ	⊠ A	Υ	⊿A	⊿A Y		Υ		[m²]	\Rightarrow see page 15
DN 100	98	198	5	595	9	623	9	190	5	138	0.0039	25 m³/h
DN 125	123	198	5	595	9	623	9	220	5	163	0.0057	35 m³/h
DN 160	158	248	5	595	9	623	9	250	5	198	0.0094	45 m³/h
DN 200	198	298	5	595	9	623	9	330	5	238	0.0155	55 m³/h
DN 250	248	348	5	595	9	623	9	380	5	288	0.0212	70 m³/h
DN 315	313	398	5	595	9	623	9	450	5	353	0.0371	95 m³/h
DN 355	353	448	5	595	9	623	9	500	5	393	0.0421	145 m³/h

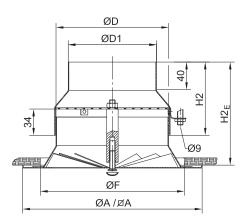
All dimensions in mm

Special designs

• Coating of front plates with polyester in other colours. Colours are available from the RAL Classic colour collection as standard. Customised colours – besides those available at the factory – can always be ordered!

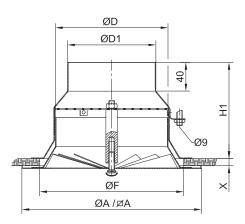
• Coating of plenum boxes with polyester, black inside and outside, or outside in colours³) as before.

 $^{_{3)}}$ for colours \Rightarrow see page 18


¹⁾ surrounding edging only with DFH0 and DFG0

Data sheet: Connections with reducers

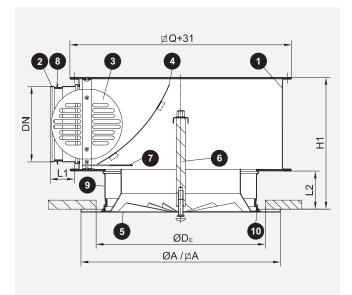
R - reducer and perforated sheet metal rectifier


- For central fastening
- For all applications

RK - Reducer, perforated sheet metal rectifier and ceiling clamping ring

- For central fastening
- For closed ceiling systems

Туре:	DFQ0	DFH0	DFG0	DFR0							
Nominal size	⊠A	⊠A	⊠A	ØA	ØD	Ø D1	ØF	H1	H2	$H2_{E}^{*)}$	Х
DN 125	198	595	623	220	123	98	163	128	96	141	10-20
DN 160	248	595	623	250	158	123	198	132	100	145	10-20
DN 200	298	595	623	330	198	178	238	124	92	133	10-20
DN 250	348	595	623	380	248	198	288	140	108	153	10-20
DN 315	398	595	623	450	313	248	353	149	117	162	10-20
DN 355	448	595	623	500	353	277	393	154	122	167	10-20


 $^{\scriptscriptstyle 7)}$ The H2 $_{\scriptscriptstyle \rm F}$ value specified for DFH0 and DFG0 is 4 mm smaller

All dimensions in mm

Data sheet: Plenum boxes for closed ceiling systems, grid ceilings and for freely suspended installation.

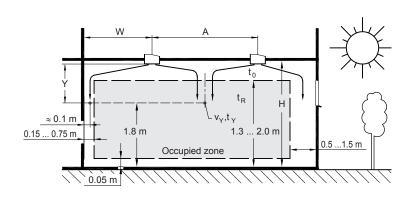
K4 - with lateral connecting piece

Parts list

- 1 Plenum box
- 2 Connecting piece
- 3 Damper (option)
- 4 Air deflector plate (option)
- 5 Swirl diffuser
- 6 Central fastening
- 7 Adjustment device of damper
- 8 Lip seal (optional)
- 9 Coupling piece
- 10 Connection seal

Plenum box dimensions K4

The heights H1 of the plenum box K4 with standard connector are printed in bold


Type: DFQ0 DFG0 DFR0 Height H1 [mm] for plenum box K4 With connecting piece DN														
Nominal size	⊠A	⊠A	⊠A	ØA	⊠Q	L2	$\varnothing \mathrm{D_{_E}}$	100	125	160	200	250	280	315
DN 100	198	595	623	190	260	45	170	195	-	-	-	-	-	-
DN 125	198	595	623	220	260	45	190	195	220	-	-	-	-	-
DN 160	248	595	623	250	260	45	220	195	220	-	-	-	-	-
DN 200	298	595	623	330	337	65	270	-	220	255	-	-	-	-
DN 250	348	595	623	380	437	65	320	-	-	255	295	-	-	-
DN 315	398	595	623	450	437	65	375	-	-	-	295	345	-	-
DN 355	448	595	623	500	537	55	420	-	-	-	-	345	375	410
		Len	ath of c	onnecti	na piec	el1		40	40	40	40	60	60	60

Length of connecting piece L1

All dimensions in mm

Dimensioning

Occupied zone according to EN 13779

The occupied zone is defined in EN 13779 as a spatial element. The comfort criteria it lays out must be met.

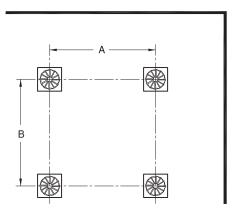
In the usual area of application, the height is 1.30 m to 2.00 m. The permissible flow velocities v_{γ} should be set as standard at a height of 1.80 m. Higher velocities are permissible outside the occupied zone, at distances of 0.15 m to 0.75 m from interior and exterior walls and from 0.5 m to 1.5 m from exterior walls with windows or doors.

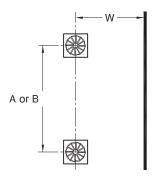
Dimensioning of DF swirl diffusers

The flow velocity v_y is determined by the nominal size of the swirl diffusers, the volume flow V, the room height H, the orthogonal distances A and B of the swirl diffusers from one another and from the wall W. In addition to the absolute distances A and B, the ratio of A to B is important. Swirl diffusers in strict rectangular arrangements with A >> B or B >> A, which can also be single row arrangements, produce significantly different flow velocities v_y compared to square and slightly rectangular arrangements. By using suitable arrangements therefore, the flow velocities in the room can be optimised; which may be particularly necessary with a high air change rate. The following applies to the occupied zone:

DF swirl diffusers achieve

- lower flow velocities v, if
 - both distances A and B are relatively large, or if


• the distances A and B are significantly different. One distance should be at least 3 m, and the other should be 2 m at the most.


- higher flow velocities v,, if
 - both distances A and B are relatively small, or if in general
 - the distances A and B are square.

The flow velocities v_{γ} of DF swirl diffusers in the area of the wall reduce as the distances increase. This applies for the distances A or B of the swirl diffusers parallel to the wall and also for their distance W from the wall.

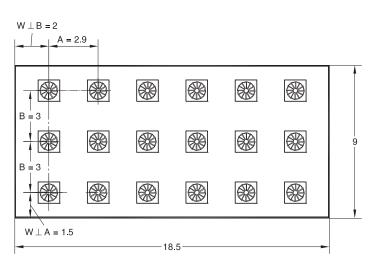
The nomograms show these relationships and the effect of adjacent walls.

The room airflow can be optimised using various arrangements of DF swirl diffusers and by choosing suitable nominal sizes. In this way, it is possible to use fewer swirl diffusers. However, effective room airflow and large enough flow velocities for effective airflow in the room should also always be ensured.

Dimensioning example

Rectangular arrangement

Specified:


Room dimension 1			18.5	m
Room dimension 2			9.0	m
Room height	Н	=	2.9	m
Ceiling spacing	Υ	=	1.2	m
Distance	H - Y	=	1.7	m
from floor for t_v and v_y				
Air change			6.7	h⁻¹
Room volume			482	m³
Total volume flow	$V_{_{tot}}$	=	3240	m³/h
Room temperature	t _R	=	22	°C
Supply air temperature	t _o	=	16	°C

Plenum box with standard connection piece

DFQ0 - 200 - K4 - 160 - DL1)			18	Pc
Volume flow per diffuser	V	=	180	m³/h
Cross-section	A _{free}	=	0.0155	m²
Flow velocity in A _{free}	V ₀	=	3.2	m/s
Δp_{t} , damper OPEN	Δp_t	=	18	Pa
L _{wa} , damper OPEN	L _{wa}	=	30	dB(A)
\Rightarrow see nomogram page 11				
Δp_{i} , damper CLOSED	18 Pa · 2.1 ²⁾	=	38	Pa
$L_{_{WA}}$, damper CLOSED	30 dB(A) + 3.8 ²⁾	=	34	dB(A)

Plenum box with other connecting piece size

	ig piece size			
DFQ0 - 200 - K4 - 125 - DL ¹⁾			18	Pc
Volume flow per diffuser	V	=	180	m³/h
Cross-section	A _{free}	=	0.0155	m²
Flow velocity in A _{free}	V ₀	=	3.2	m/s
Δp_t , damper OPEN		=	28	Pa
L _{wa} , damper OPEN		=	36	dB(A)
\Rightarrow see nomogram page 11				
Δp_t , damper CLOSED	28 Pa · 3.22)	=	90	Pa
$L_{_{WA}}$, damper CLOSED	36 dB(A) + 7.8 ²⁾	=	44	dB(A)

Dimensions in [m]

Octave sound power level $L_{\mbox{\tiny W-Oct}},$ damper OPEN

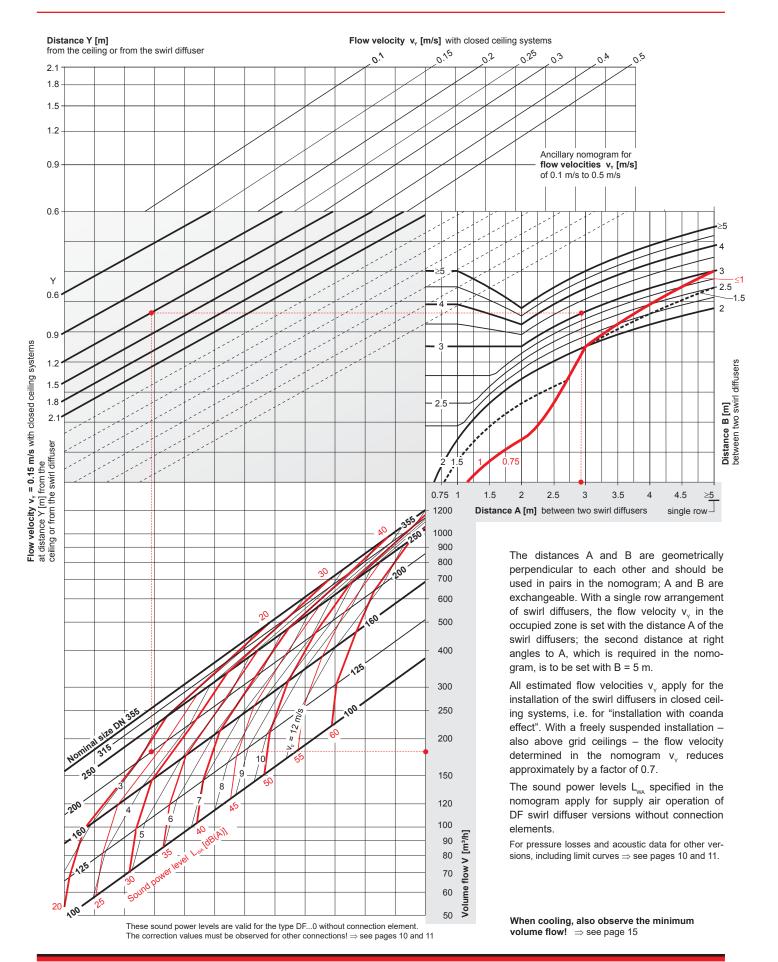
f	[Hz]	63	125	250	500	1000	2000	4000	8000	
L _{wa}	[dB(A)]	30	30	30	30	30	30	30	30	
ΔL 3.2 [m/s]	[dB]	+14	+10	+4	-4	-8	-14	-25	-26	
L _{w-Oct}	[dB]	44	40	34	26	22	<20	<20	<20	
\Rightarrow see nomogram page 11										

Octave sound power level L_{w-od}, damper OPEN

f	[Hz]	63	125	250	500	1000	2000	4000	8000	
L _{wa}	[dB(A)]									
$\Delta L_{3.2 \text{ [m/s]}}$	[dB]	+14	+10	+4	-4	-8	-14	-25	-26	
L _{w-Oct}	[dB]	50	46	40	32	28	22	<20	<20	
\Rightarrow see nomogram page 11										

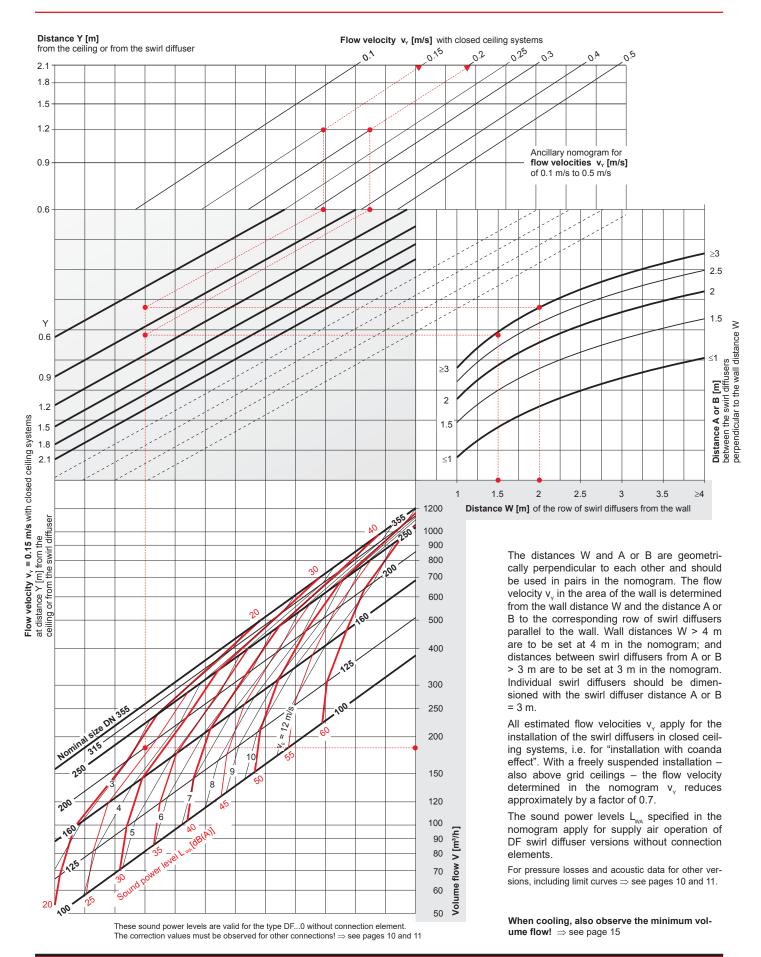
 $^{_{1)}}$ Order information \Rightarrow see page 18

 $^{_{2)}}$ Correction values \Rightarrow see page 11


Room airflow

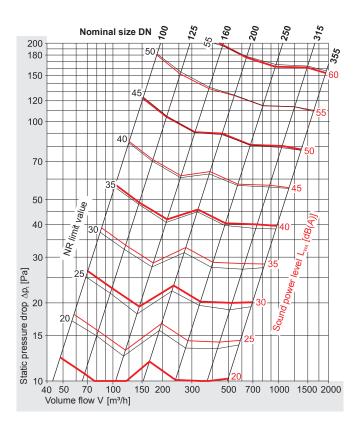
Distance A	A =	2.90 m
Distance B	в =	3.00 m
Distance W, at right angles to A	W =	1.50 m
Distance W, at right angles to B	W =	2.00 m
Flow velocity in occupied zone	V _Y =	0.15 m/s
\Rightarrow see nomogram on page 8		
Flow velocity at the wall, at right angles to A	v _y =	0.20 m/s
\Rightarrow see nomogram on page 9		
Flow velocity at the wall, at right angles to B	V _Y =	0.15 m/s
\Rightarrow see nomogram on page 9		
Temperature ratio	$\Delta t / \Delta t_0 =$	0.04
Induction	i =	25
\Rightarrow see nomogram on page 14		

Nomenclature \Rightarrow see page 14

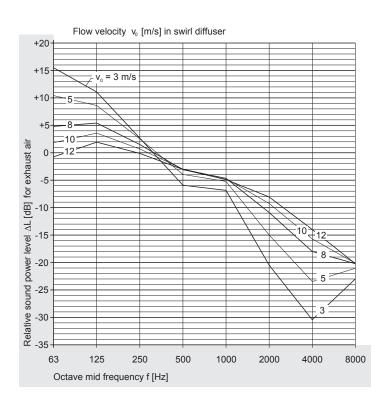


Room airflow (air streams towards each other)

Room airflow (air streams towards a wall)



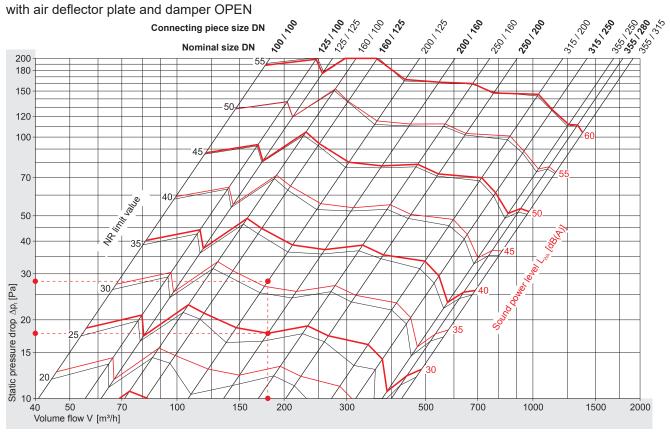
WILDEBOER[®]


DF swirl diffusers

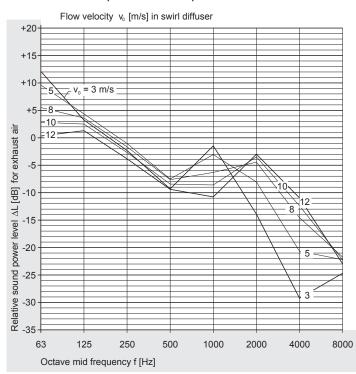
SUPPLY AIR: Pressure drop, sound power level, NR (noise rating), relative sound power level

DF without connection element

DF without connection element


Correction values: Connection versions L, R, RK

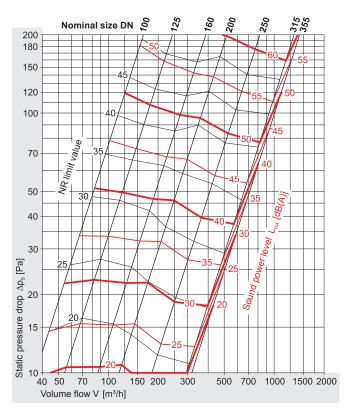
Nominal size	Version	х Др	+ L _{wa}
DN 100	L	x 1.3	+5
	R/RK	-	-
DN 125	L	x 1.4	+5
	R/RK	x 1.6	+7
DN 160	L	x 1.3	+4
	R/RK	x 1.5	+6
DN 200	L	x 1.3	+4
	R/RK	x 1.3	+5
DN 250	L	x 1.4	+7
	R/RK	x 1.5	+8
DN 315	L	x 1.3	+8
	R/RK	x 1.4	+9
DN 355	L	x 1.3	+8
	R/RK	x 1.5	+9


SUPPLY AIR: Pressure drop, sound power level, NR (noise rating), relative sound power level

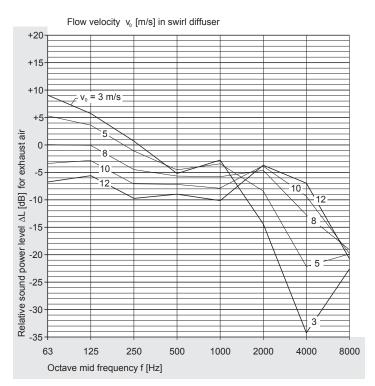
DF with plenum box K4-DL

Example \Rightarrow see page 7

DF with plenum box K4-DL with air deflector plate and damper OPEN


Correction values: Plenum box K4 with damper CLOSED

Nominal size	Connecting piece DN	х Др	+ L_{wa}	
DN 100	100	1.8	0.6	
DN 125	100	2.4	4.9	
	125	1.7	0.7	
DN 160	100	3.4	12.0	
	125	2.3	5.5	
DN 200	125	3.2	7.8	
	160	2.1	3.8	
DN 250	160	2.6	6.2	
	200	1.9	2.5	
DN 315	200	2.8	7.2	
	250	1.9	2.5	
DN 355	250	2.5	2.8	
	280	1.8	1.8	
	315	1.5	0.7	

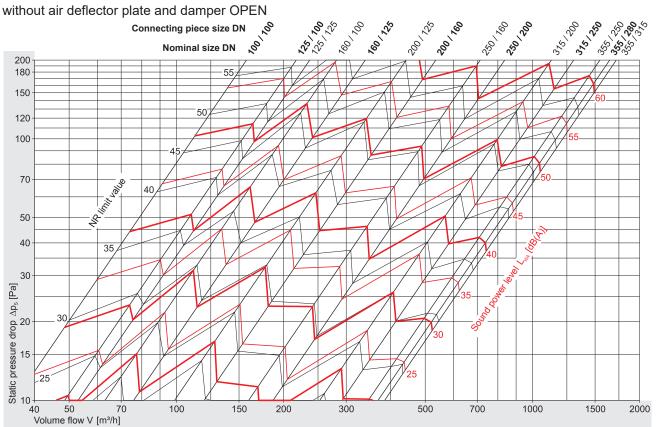


EXHAUST AIR: Pressure drop, sound power level, NR (noise rating), relative sound power level

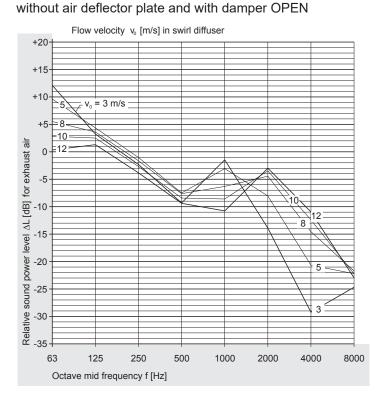
DF without connection element

DF without connection element

Correction values: Connection versions L, R, RK


WILDEBOER[®]

Nominal size	Version	х Др	+ L_{wa}	
DN 100	L	x 1.3	+2	
	R/RK	-	-	
DN 125	L	x 1.2	+3	
	R/RK	x 1.7	+4	
DN 160	L	x 1.3	+3	
	R/RK	x 1.7	+5	
DN 200	L	x 1.2	+3	
	R/RK	x 1.3	+1	
DN 250	L	x 1.3	+1	
	R/RK	x 1.7	+2	
DN 315	L	x 1.2	+2	
	R/RK	x 1.8	+4	
DN 355	L	x 1.1	+3	
	R/RK	x 1.2	+8	

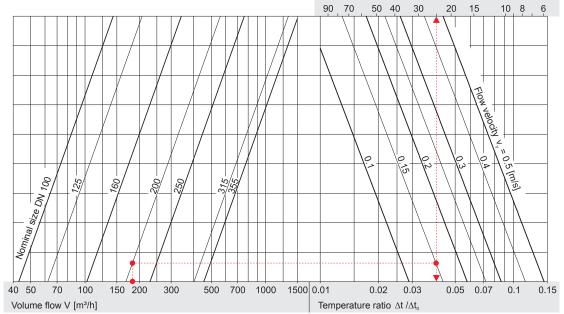


EXHAUST AIR: Pressure drop, sound power level, NR (noise rating), relative sound power level

DF with plenum box K4-D

DF with plenum box K4-D

Correction values: Plenum box K4 with damper CLOSED


Nominal size	Connecting piece DN	х Др	+ L _{wa}	
DN 100	100	1.4	0.1	
DN 125	100	1.9	1.6	
	125	1.4	0.4	
DN 160	100	2.6	10.3	
	125	1.9	4.1	
DN 200	125	2.7	11.2	
	160	1.8	3.0	
DN 250	160	2.3	6.7	
	200	1.8	1.6	
DN 315	200	2.5	11.7	
	250	1.9	6.1	
DN 355	250	2.2	8.6	
	280	1.7	5.0	
	315	1.5	3.3	

Temperature ratio, induction, nomenclature, acoustic limit values, room attenuation

Induction i

Temperature ratio, induction

Example (⇒ see also page 7)

Specified:	Nominal size 200	Result:
Volume flow	V = 180 m ³ /h	Temperature ratio $\Delta t/\Delta t_0 = 0.04$
Flow velocity	v _y = 0.15 m/s	Calculate temperature t
Room temperature	t _R = 22 °C	$t_y = 0.04 \cdot (16 - 22) + 22 = 21.8$ °C
Supply air temperature	t _o = 16 °C	Induction i = 25

Nomenclature

$A_{_{\text{free}}}$	[m²]	= Free cross-section of swirl diffuser or exhaust air diffuser	V_s	[m³/h]	= Secondary volume flow; $V_{c} = i \cdot V$
DN	[mm]	= Connecting piece size	Δp,	[Pa]	= Total pressure drop
V	[m³/h]	= Volume flow	Δp _s	[Pa]	= Static pressure drop
V _{tot.}	[m³/h]	= Total volume flow	L	[dB]	= Sound pressure level
v _o	[m/s]	= Flow velocity in A_{free} ; it is $v_o = V / (3600 \cdot A_{free})$	$L_{_{pA}}$	[dB(A)]	 A-weighted sound pressure level
V _Y	[m/s]	= Flow velocity along air	L _w	[dB]	= Sound power level
	[]	stream path	$L_{\rm wa}$	[dB(A)]	= A-weighted sound power level
А, В	[m]	 Distance between two diffusers 		[dB]	= Octave sound power level
W	[m]	= Distance of diffuser to wall	L _{W-Oct}	[uD]	$L_{w-Oct} = L_{wA} + \Delta L$
Y	[m]	= Distance from the ceiling	ΔL	[dB]	= Relative sound power level
Н	[m]	= Room height			to L _{wa}
t _y	[°C]	= Temperature along the air	ΔL_{R}	[dB]	= Acoustic room attenuation
•		stream path; it is	f	[Hz]	= Octave mid frequency
		$\mathbf{t}_{Y} = (\Delta t / \Delta t_{0}) \cdot (\mathbf{t}_{0} - \mathbf{t}_{R}) + \mathbf{t}_{R}$	NR		= NR limit value relating to
t _o	[°C]	 Supply air temperature 			sound power
t _R	[°C]	= Room temperature	NC		= NC limit value relating to
$\Delta t_{_0}$	[K]	= Temperature differential; it is $\Delta t_0 = t_0 - t_R$			sound power
$\Delta t / \Delta t_{0}$		= Temperature ratio			
i		= Induction			

Acoustic limit values NR, NC

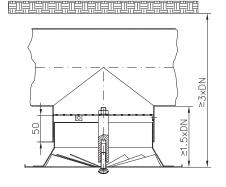
Calculate secondary volume flow V.: $V_{c} = 25 \cdot 180 \text{ m}^{3}/\text{h} = 4500 \text{ m}^{3}/\text{h}$

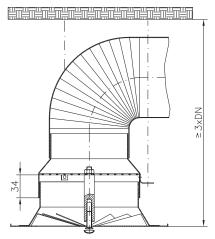
The NR limit values specified in the nomograms according to ISO 1996 are calculated from octave sound power levels and not in relation to sound pressure levels. The room attenuation ΔL_{R} is not taken into account. It depends on the acoustics of the room in each individual case.

NC limit values should be related like NR limit values to the sound pressure level. In the application area of ventilation and air conditioning, NC may be roughly estimated at NC = NR - 4.

Room attenuation ΔL_{R}

The sound power levels are always stated in the nomograms. The sound pressure level must be used when rating the acoustics. It differs from the sum total of the sound power levels by the room attenuation:


 $L_{p}, L_{pA} = L_{W}, L_{WA} + \Delta L_{R}$ In ventilation and air conditioning systems, $\Delta {\rm L}_{_{\rm R}}$ can be set at approximately -8 dB.

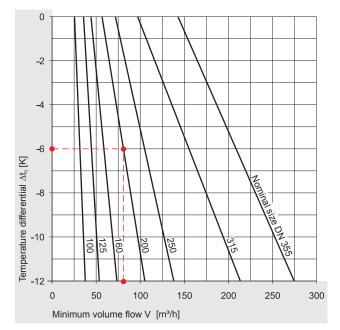

Installation instructions

Installation without plenum box

- DF swirl diffusers can be used directly in circular ventilation ducts or in their branches. Perforated plates are recommended for rectification of the supply air flow and for a central fastening.
- DF swirl diffusers mounted freely in the room should have a nominal size DN which is at least three times the distance to the ceiling. This is the minimum requirement for horizontal dispersion of the air stream; otherwise this could lead to the (undesirable) coanda effect of the air flow being redirected towards the ceiling.

With perforated plate + T-piece

With reducer + connecting bend


Area of application

To ensure an optimum distribution of supply air in rooms with a height of roughly 2.5 to 4 m, flush-mounted DF swirl diffusers in ceilings are required; they then distribute the supply air radially below the ceiling. Air is deflected into the occupied zone by room walls and counterflows. In the case of cooling, the minimum flow rates specified for a given temperature differential Δt_0 between the supply air and room air should be complied with. A partial drop of cold air by way of stratification, accompanied by draught effects in the occupied zone, is prevented, and may otherwise occur when cold air is introduced into the room at a higher temperature.

In general, the volume flow rates should never fall below a minimum level in order to ensure a sufficient level of room ventilation, even in heating mode and under isothermal conditions with $\Delta t_0 = 0$ K.

Thermally induced deflections occur with a freely suspended installation. In this respect, the supply air penetrating into the occupied zone can be expected with changed flow velocities. Comfort criteria can therefore only be satisfied to a limited extent with this type of installation.

Cooling condition

Example (\Rightarrow see page 7)

DFQ0 - 200 - K4 - 160 - DLRoom temperature $t_R = 22 \ ^{\circ}C$ Supply air temperature $t_0 = 16 \ ^{\circ}C$ Temperature differential $\Delta t_0 = -6 \ K$ Specified volume flow $V = 180 \ m^3/h \ supply air$ Minimum volume flow $\geq 80 \ m^3/h$

 \Rightarrow see nomogram above

Due to

the cooling condition based on the nominal size DN 200 and cooling with a maximum temperature differential of $\Delta t_o =$ -6 K is satisfied!

¹⁸⁰ m³/h > 80 m³/h

SUPPLY AIR: Quick selection

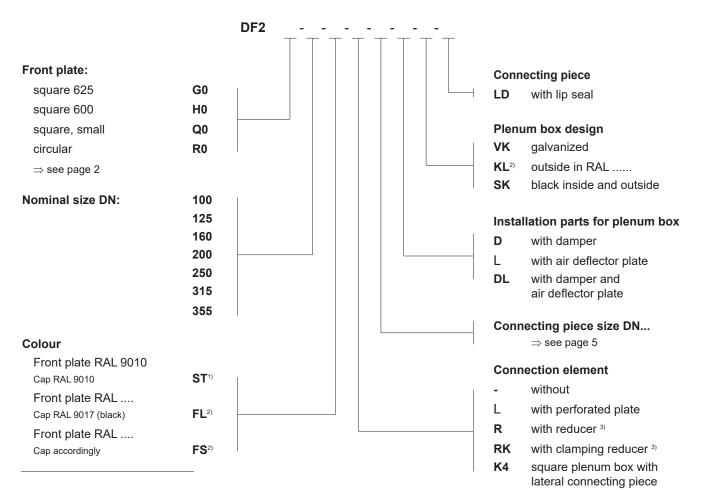
Volume flow [m³/h] / pressure drop [Pa]

Connecting piece size DN	Sound power level [dB(A)]								
Nominal size DN			20	25	30	35	40	45	50
	100	100	48 / 12	58 / 18	70 / 26	85 / 38	105 / 59	125 / 83	150 / 120
	125	125	68 / 11	80 / 15	100 / 23	120 / 34	145 / 49	175 / 72	210 / 103
DF	160	160	100 / 9	120 / 13	145 / 19	175 / 28	210/41	260 / 63	310 / 89
without	200	200	165 / 12	195 / 16	230 / 23	280 / 34	330 / 47	390 / 65	460 / 91
connection element	250	250	240 / 10	280 / 14	340 / 21	400 / 28	480 / 41	570 / 58	680 / 82
	315	315	370 / 10	440 / 14	520 / 20	620 / 28	740 / 40	880 / 56	1050 / 80
	355	355	500 / 10	590 / 14	700 / 20	820 / 28	980 / 40	1160 / 56	1370 / 78
	100	100	40 / 11	48 / 16	59 / 23	70 / 33	85 / 49	105 / 75	125 / 107
DF	125	125	56 / 10	68 / 14	80 / 20	100 / 32	120 / 46	145 / 67	175 / 97
with	160	160	85 / 9	100 / 12	125 / 19	150 / 28	185 / 42	220 / 60	270 / 90
perforated sheet	200	200	145 / 12	175 / 17	210 / 24	240 / 32	290 / 47	340 / 64	410 / 93
metal L	250	250	185 / 8	220 / 12	260 / 17	310 / 24	370 / 34	440 / 48	530 / 69
	315	315	290 / 8	340 / 11	400 / 15	480 / 22	570 / 31	680 / 44	810 / 63
	355	355	380 / 8	450 / 11	540 / 16	640 / 22	750 / 31	890 / 43	1060 / 61
	125	100	51 / 10	62 / 14	75 / 21	90 / 30	110 / 44	130 / 62	160 / 94
DF	160	125	80 / 9	95 / 13	115 / 19	140 / 28	170 / 41	210 / 63	250 / 89
with reducer /	200	180	140 / 11	165 / 16	200 / 23	230 / 31	280 / 45	330 / 63	390 / 88
clamping reducer	250	200	185 / 9	220 / 13	260 / 18	310 / 25	370 / 36	440 / 51	520 / 72
R / RK	315	250	270 / 8	320 / 11	380 / 15	450 / 21	540 / 30	640 / 42	760 / 60
	355	280	370 / 8	440 / 12	520 / 16	620 / 23	730 / 32	860 / 45	1020 / 63
	100	100	38 / 9	46 / 13	56 / 19	67 / 27	80 / 38	100 / 60	120 / 87
	125	100	55 / 10	66 / 14	80 / 21	95 / 30	115 / 43	140 / 64	170 / 95
DF	125	125	55 / 8	67 / 12	80 / 17	100 / 27	120 / 38	145 / 56	175 / 82
	160	100	75 / 11	90 / 16	110 / 24	130 / 33	155 / 47	190 / 71	230 / 104
with	160	125	80 / 10	100 / 15	120 / 22	145 / 31	175 / 46	210 / 66	250 / 93
plenum box	200	125	100 / 9	120 / 12	145 / 18	175 / 27	210 / 38	250 / 54	300 / 78
K4 - DL	200	160	125 / 9	150 / 12	180 / 18	220 / 26	260 / 37	310 / 53	380 / 79
with air deflector	250	160	165 / 10	195 / 13	230 / 18	280 / 27	330 / 38	400 / 56	470 / 77
plate	250	200	185 / 8	220 / 12	270 / 18	320 / 25	380 / 35	450 / 50	540 / 71
Damper OPEN	315	200	240/8	290 / 11	340 / 16	410 / 23	500 / 34	600 / 49	720 / 70
	315	250	260 / 7	310 / 10	380 / 14	450 / 20	540 / 29	650 / 42	790 / 62
	355	250	260 / 5	320 / 7	390 / 11	470 / 16	580 / 24	700 / 34	850 / 51
	355	280	310/6	370/9	440 / 12	530 / 18	640 / 26	770/37	920 / 53
	355	315	340 / 6	410/9	490 / 13	580 / 18	690 / 26	820 / 37	970 / 51

Standard connecting pieces of plenum boxes K4 are in bold.

When cooling, also observe the minimum volume flow! $\,\Rightarrow$ see page 15

EXHAUST AIR: Quick selection


Volume flow [m³/h] / pressure drop [Pa]

Connecting piece size DN	Connecting piece size DN Sound power level [dB(A)]								
Nominal size DN	•		20	25	30	35	40	45	50
	100	100	36 / 10	44 / 15	54 / 22	67 / 34	85 / 54	100 / 75	125 / 118
	125	125	56 / 11	68 / 15	80 / 22	100 / 34	120 / 48	145 / 71	180 / 109
DF	160	160	90 / 11	105 / 15	130 / 23	155 / 32	185 / 46	230 / 71	270 / 97
without	200	200	120 / 11	145 / 16	175 / 23	210 / 33	250 / 46	300 / 67	360 / 96
connection element	250	250	175 / 9	210 / 13	250 / 19	300 / 27	360 / 39	440 / 58	530 / 84
connection clement	315	315	280 / 9	330 / 13	400 / 18	480 / 26	570 / 37	680 / 53	820 / 77
	355	355	430 / 18	500 / 25	590 / 34	690 / 47	810 / 65	940 / 87	1100 / 119
	100	100	32 / 10	40 / 16	49 / 24	61 / 36	75 / 55	90 / 79	115 / 130
DF	125	125	50 / 10	61 / 15	75 / 23	90 / 34	110 / 50	130 / 70	160 / 106
with	160	160	80 / 11	95 / 15	115 / 22	140 / 33	165 / 46	200 / 67	240 / 97
	200	200	105 / 10	130 / 15	155 / 21	185 / 30	220 / 43	270 / 65	320 / 91
perforated sheet metal L	250	250	165 / 10	200 / 15	240 / 21	290 / 31	350 / 46	420 / 66	500 / 93
	315	315	250 / 9	310 / 13	370 / 19	440 / 27	520 / 38	630 / 56	750 / 79
	355	355	390 / 16	450 / 22	530 / 30	620 / 41	720 / 55	850 / 77	990 / 104
	125	100	47 / 12	57 / 18	69 / 27	85 / 41	100 / 57	125 / 88	150 / 127
DF	160	125	75 / 13	90 / 19	110 / 28	130 / 39	155 / 55	190 / 83	230 / 122
with reducer /	200	180	115 / 13	140 / 19	165 / 27	200 / 40	240 / 57	290 / 84	340 / 115
clamping reducer	250	200	160 / 13	195 / 19	240 / 29	280 / 39	340 / 57	410 / 84	500 / 124
R / RK	315	250	240 / 12	290 / 18	350 / 26	420 / 37	500 / 52	600 / 75	720 / 108
	355	280	340 / 14	400 / 19	460 / 25	540 / 35	640 / 49	740 / 66	870 / 91
	100	100	32 / 8	39 / 12	49 / 19	60 / 29	75 / 45	90 / 65	115 / 107
	125	100	50 / 10	61 / 16	75 / 24	90 / 34	110 / 51	135 / 77	165 / 115
DE	125	125	51/9	62 / 14	75 / 20	90 / 29	110 / 43	135 / 65	165 / 97
DF	160	100	75 / 14	95 / 23	110 / 30	135 / 46	160 / 64	195 / 96	230 / 133
with	160	125	80 / 11	95 / 16	115 / 23	140 / 34	165 / 47	200 / 69	240 / 100
plenum box	200	125	130 / 17	150 / 23	180 / 33	210 / 45	250 / 64	290 / 86	340 / 118
K4 - D	200	160	130 / 12	155 / 17	180 / 23	210 / 31	250 / 44	300 / 63	350 / 85
without air deflector	250	160	170 / 11	200 / 16	240 / 23	290 / 33	340 / 45	410 / 66	490 / 94
plate,	250	200	170 / 8	200 / 11	240 / 16	290 / 24	350 / 35	420 / 50	500 / 72
Damper OPEN	315	200	290 / 13	340 / 18	410 / 26	480 / 36	570 / 51	670 / 70	800 / 100
-	315	250	290 / 10	350 / 14	410 / 20	490 / 28	580 / 39	690 / 56	820 / 79
	355	250	350 / 10	420 / 15	500 / 21	590 / 29	710 / 42	850 / 60	1010 / 85
	355	280	370 / 10	440 / 14	520 / 20	620 / 28	740 / 40	880 / 57	1050 / 81
	355	315	370 / 9	440 / 13	520 / 18	620 / 26	740 / 37	880 / 52	1050 / 74

Standard connecting pieces of plenum boxes K4 are in bold.

Order information

1) standard colour

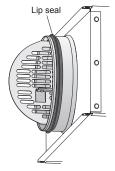
²⁾ also specify the RAL colour

³⁾ available from nominal size DN 125

 \Rightarrow see page 4

Ordering examples:

- ... pc DF2 Q0 125 ST RK
- ... pc DF2 G0 355 FL R


... pc DF2 R0 - 250 - FS - K4 - 200 - DL - VK - LD

Quick selection

 \Rightarrow see pages 16 and 17.

NOTE concerning colours

- The RAL colours which are available as standard correspond to the RAL CLASSIC colour collection.
- Colour variations should never be totally avoided for technical reasons; this is particularly the case for colours RAL 9006 (white aluminium) and RAL 9007 (grey aluminium). A special colour matching is advisable in particular instances, and in conjunction with surrounding colours, for example, suspended ceilings!

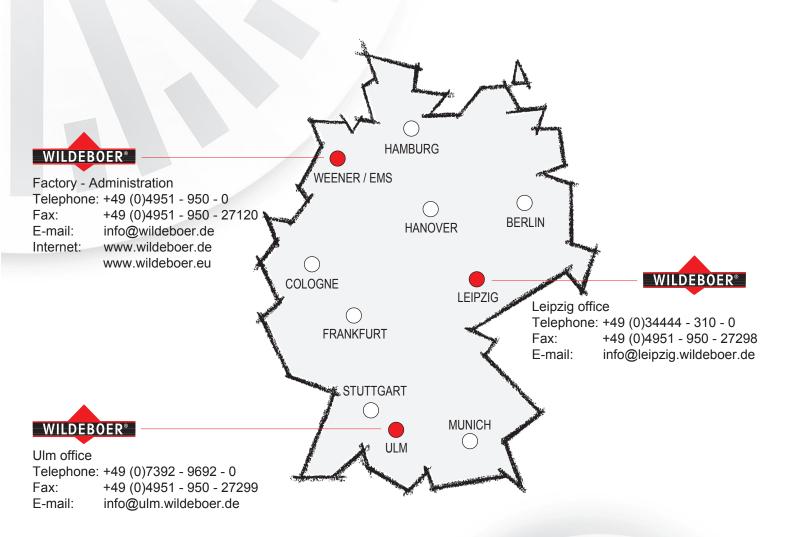
Connecting piece

with lip seal

Specification text

Swirl diffuser with high induction for constant and variable volume flows and temperature differentials up to -12 K during cooling. With square / circular front plate, conical diffuser, integrated guide vanes and concealed central fastening. Made of galvanized sheet steel with resilient, colour-fast, anti-static polyester coating, smooth glossy in colour RAL 9010 (white) or in RAL special colour. Cap to match or RAL 9017 (black). With

- Special perforated plate for uniform air inflow for installation in the connection duct and with fixture for concealed central fastening.
- Reducer made of galvanized sheet steel, inserted perforated plate for uniform air inflow, surface-mounted suspension lugs and concealed central fastening
- Reducer made of galvanized sheet steel for ceiling clip-on fixing, inserted perforated plate for uniform air inflow, surface-mounted suspension lugs and concealed central fastening
- Plenum box with central fastening, made of galvanized sheet steel with lateral connecting piece and holes for suspension fixtures with
 - special air deflector plate, in particular for supply air, for optimum air distribution with low flow noise
 - black powder coating inside and outside
 - powder coating in RAL special colour on outside
 - lip seal
 - damper for adjusting volume flow without dismantling the swirl diffuser


Certificate of conformity as proof of compliance with the hygiene requirements according to VDI 6022-1, VDI 3803-1, DIN 1946-4 and DIN EN 13779.

Installation in closed ceiling systems, grid ceilings and freely suspended.

 Pc			
Volume flow:		m³/h	
Pressure drop:		Pa	
Sound power level		dB (A)	
Manufacturer:	WILDEBOER®		
Type/series:	DF / DF2		
Nominal size			
Connecting piece size DN:		mm	
Colour of swirl diffuser:	RAL		
Colour of plenum box:	RAL		
complete with fixings		deliver:	
		install:	

Delete texts not highlighted in bold as required!

INNOVATIVE · PRACTICAL · ECONOMICAL

TAKE ADVANTAGE OF OUR STRENGTHS

