

Multileaf Dampers

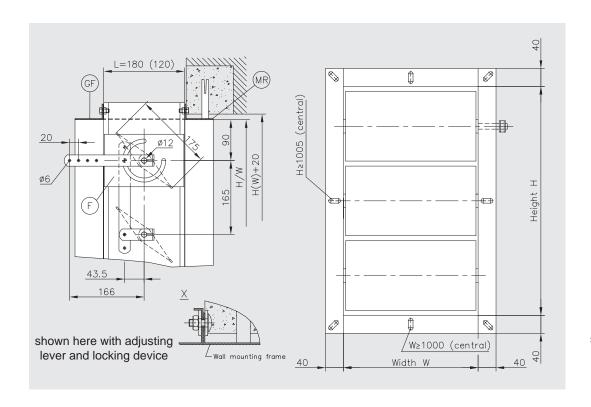
Steel, galvanised

JK multileaf dampers made of galvanised sheet steel are control and shut-off dampers for ventilation and air conditioning systems. With hollow blades profiled for optimum flow with linkage and galvanised actuator spindles in plastic or brass bushings; 180 mm or 120 long frame with canted connecting flanges. With adjusting lever, manual locking device or electrical actuators.

Summary of types

Blade coupling	Blade bearing	Leng 120 mm*)	gth L 180 mm
opposed with external linkage	plastic	JK-N120G	JK-N180G
	brass	JK-M120G	JK-M180G
parallel with external linkage	plastic	JK-N120	JK-N180
	brass	JK-M120	JK-M180
parallel with internal linkage	plastic	JK-N120I	JK-N180I
	brass	JK-M120I	JK-M180I

^{*)} Note: Blades are longer than the frame!

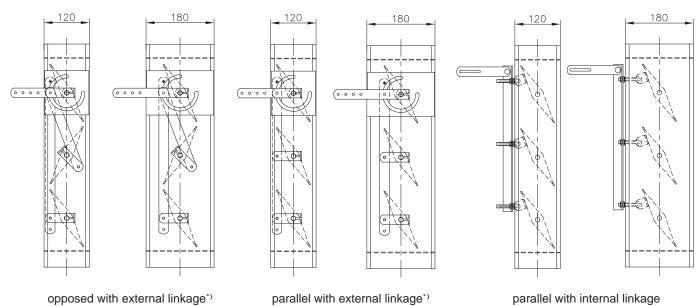


MR Wall mounting frame made of galvanised sheet steel

GF Counter flange made of galvanised sheet steel

JK multileaf damper with electrical actuator FM

Sizes W x H		
Width W [mm]	Height H [mm]	
400	180	
600	263	
800	345	
1000	428	
1200	510	
1400	675	
1600	840	
1800	1005	
2000	1170	
	1335	
	1500	
	1665	
	1830	
	1995	
All \\/ an	d U dimon	


All W and H dimensions can be combined.
Intermediate dimensions in 1 mm steps are available for 180 mm lengths.

Actuators

Blade coupling - The actuator spindle is always on the uppermost blade -

In addition, the fifth blade with effect from H = 840 mm and the ninth blade with effect from H = 1500 mm are designed to include an actuator spindle. Adjusting devices can also be added by the customer on site!

⁵⁾ On the operation side the blade setting is visible from the outside by way of notches in the spindle.

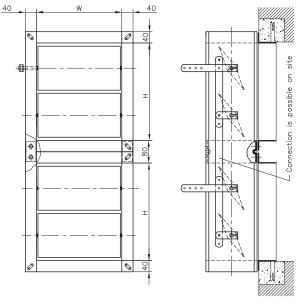
Electrical actuators

Multileaf dampers with externally located linkage are available with the following factory-installed electrical actuators:

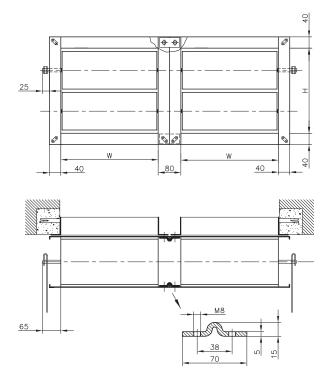
Electrical reversible actuators SM24A and SM220A, which open or close the multileaf dampers on 24V direct or alternating voltage or 230V alternating voltage at a driving torque of 20° [Nm]. The current actuator setting is retained in the event of a power failure.

Further data ⇒ see page 8

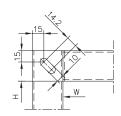
Electrical spring return actuators FM24 and FM220, which open the multileaf dampers on 24V direct or alternating voltage or 230V alternating voltage at a driving torque of 18^{->} [Nm]. In the event of power failure the multileaf dampers close with a driving torque of 12^{->} [Nm]. Further data ⇒ see page 8



[🤊] Required driving torques \Rightarrow see page 6; suitable actuators must be installed on site if these actuators are unable to provide the specified torque.


Installation, details, accessories

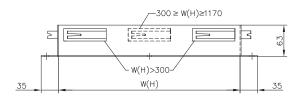
Vertical / horizontal assembly with straps



Recommendations:


- Use a separate actuator for each multileaf damper!
- Install multileaf dampers with horizontally arranged blades!

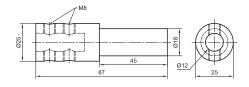
Corner drill hole in connecting frame

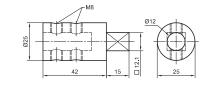


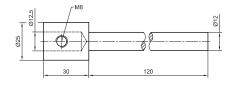
Adjusting lever

Accessories

- **MR** Wall mounting frame made of galvanised sheet steel, punched, canted, corner welded with several wall clamps for cementing into wall.
- **GF** Counter flange made of galvanised sheet steel, punched, canted and corner welded.

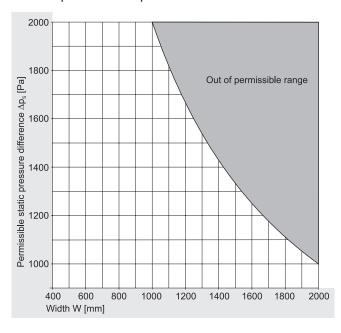

Counter flanges are without wall clamps!


Spindle extensions for customer-supplied actuators

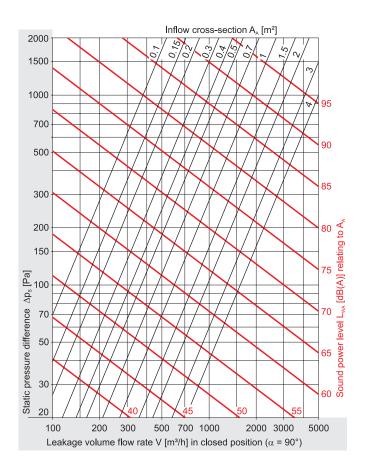

Extension for SM actuators

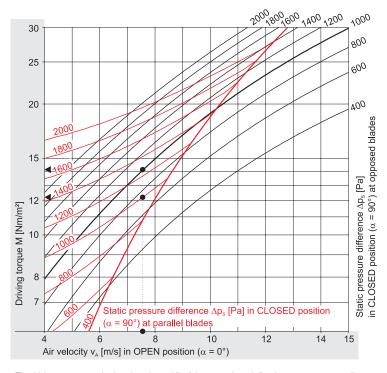
Extension for FM actuators

L150 extension for lever



Range of application, driving torques, leakage, pressure drop, sound power level


The **permissible pressure difference** depends on the width W and the leakage volume flow rate of the multileaf damper in closed position:



The permissible temperature

depends on the bearing material:

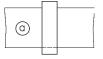
JK-N: -20°C to +100°C JK-M: -20°C to +110°C

- The driving torques required to close the multileaf dampers when air flow is present are generally significantly less (reference value: 50%) than those required to open the multileaf dampers!
- The permissible driving torque per actuator spindle is limited to 35 [Nm].

The **required driving torque** depends on the operating characteristics of the fan and duct network. The pressure may rise on increasing restriction of the volume flow rate by way of a shut-off damper; normally the volume flow rate reduces simultaneously and the flow velocity in the multileaf damper drops in relation to the inflow cross-section; however it rises in relation to the free cross-section. At the respective operating point to be set, a non-constant driving torque is required over the adjustment range from $0^{\circ} \leq \alpha \leq 90^{\circ}$ for the activation of the multileaf damper. An actuator must apply the maximum arising driving torque in order to allow unhindered travel across the entire adjustment angle range.

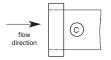
The driving torque which can be read in the nomogram opposite is required for multileaf dampers in ventilation systems with quadratic system operating characteristics and conventional fans. The basic variables are the maximum flow velocity in the fully open multileaf damper and the pressure difference present in the closed position.

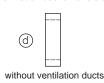
Example

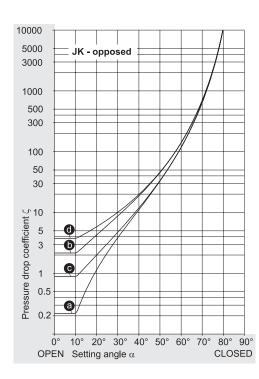

Flow velocity $V_A = 7.5 \text{ [m/s]}$ Pressure difference $\Delta p_S = 1000 \text{ [Pa]}$ Driving torque per m² inflow cross-section A_A

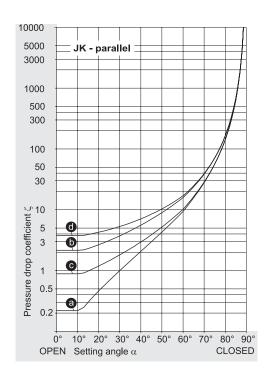
• opposed $M \approx 14 \text{ [Nm/m}^2\text{]}$ • parallel $M \approx 12 \text{ [Nm/m}^2\text{]}$

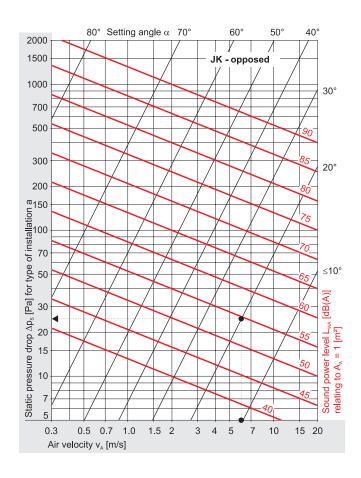
Pressure drop coefficients ζ , pressure drop, sound power level

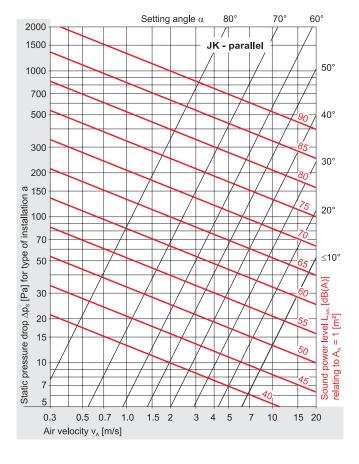

Pressure drop coefficients ζ for installation type:


ventilalion duct on both sides




ventilation duct on one side

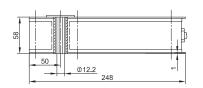


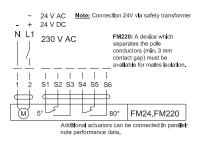

ventilation duct on one side

Example (JK - opposed)

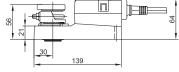
Setting angle $\alpha = 20^{\circ}$ Air velocity $v_{\wedge} = 6 \text{ [m/s]}$ Pressure drop (type of installation a) Δp_s Sound power level L_{wa}

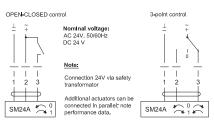
 $\Delta p_s = 24 [Pa]$ $L_{MA} = 55 [dB(A)]^*)$ *) Sound power levels are referenced to A_A = 1 [m²]; correction values for other inflow cross-sections ⇒ see page 8

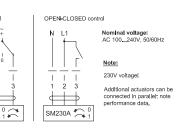



Electrical actuators, nomenclature

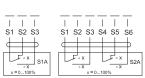
Technical data for factory installed actuators


	SM24A	SM220A	FM24	FM220
Input voltage	24V AC / DC	100 to 240V AC	24V AC / DC	230V AC
tolerance range AC	± 20%	-15%, + 10%	± 20%	±14%
tolerance range DC	± 20%		-10%, +20%	
Torque				
motor	≥20 Nm	≥20 Nm	≥18 Nm	≥18 Nm
spring return			≥12 Nm	≥12 Nm
Running time for 90°				
motor	150 s	150 s	140 s	140 s
spring return			~16 s	~16 s
Power input	4 VA	6 VA	10 VA	12.5 VA
Power consumption				
motoring	2 W	2.5 W	7 W	8 W
holding	0.2 W	0.6 W	2 W	3 W
Degree of protection	IP 54	IP 54	IP 54	IP 54
Connecting cable 0.75 mm ²	approx. 1 m	approx. 1 m	approx. 1 m	approx. 1 m
motor	3 wire	3 wire	2 wire	2 wire
auxiliary switch			6 wire	6 wire
auxiliary switch S1A	3 wire	3 wire		
auxiliary switch S2A	6 wire	6 wire		
Ambient temperature -30°C to +50°C			•	


FM24, FM220 with integrated limit switches



SM24A, SM220A



Auxiliary switches S1A, S2A

3-point control

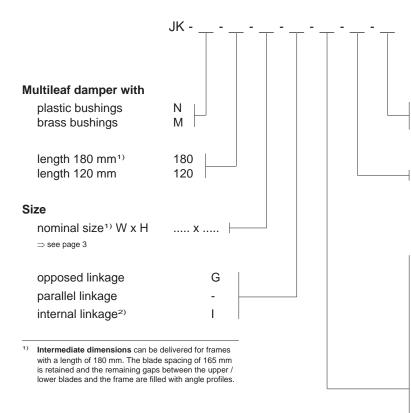
SM230A 2 1 2

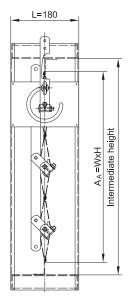
Nomenclature

A_A	[m²]	= inflow cross-section $A_A = W \cdot H$	
V	[m³/h]	= volume flow rate, leakage volume flow rate	
V _A	[m/s]	flow velocity relating to A_A(inflow velocity)	
α		= setting angle multileaf damper OPEN: α = 0° CLOSED: α = 90°	
ζ		= pressure drop coefficient relating to A _A pressure drop $\Delta p_s = \zeta \cdot \rho/2 \cdot v_A^2$	
ρ		= medium density ($\rho_{dry \ air \ 20^{\circ}C, \ 1 \ bar}$ = 1.188 [kg/m³])	
Δp _s	[Pa]	= static pressure drop, static pressure difference	
L_{wa}	[dB(A)]	= A-weighted sound power level	
ΔL	[dB]	= correction to L_{WA} relating to $A_A = 1 \text{ [m^2]}$ $L_{WA} = L_{WA-1m^2} + \Delta L \text{ [dB]}$	

 $\boldsymbol{M}_{\mathrm{total}} \left[Nm \right] = \boldsymbol{M}_{\mathrm{1}m^{2}} \left[Nm/m^{2} \right] \cdot \boldsymbol{A}_{A} \left[m^{2} \right]$

For other inflow cross-sections the following ΔL corrections must be added in the case of sound power levels relating to an inflow cross-section of $A_A = 1$ [m²]:


A_A [m ²]	ΔL [dB]
0.10	-10
0.25	-6
0.40	-4
0.50	-3
0.60	-2
1.00	0
1.25	+1
1.60	+2
2.00	+3
2.50	+4
3.20	+5
4.00	+6


 $[Nm/m^2]$ = driving torque

M

Order information

- 2) In this design the actuators are in the air flow! Factory installed adjusting devices are not available in this case.
- 3) Actuators with greater driving torques to be supplied by customer!

Accessories

1GF with 1 counter flange2GF with 2 counter flanges

 \Rightarrow see page 5

MR with wall mounting frame

⇒ see page 5

Adjusting devices²⁾

⇒ see page 4 and page 8

F locking device

Actuators 20 [Nm]3)

SM220A 100 to 240V AC

SM220A-S1A 100 to 240V AC and 1 auxiliary switch SM220A-S2A 100 to 240V AC and 2 auxiliary switches

SM24A 24V AC / DC

SM24A-S1A 24V AC / DC and 1 auxiliary switch SM24A-S2A 24V AC / DC and 2 auxiliary switches

Spring return actuators 18 [Nm] / 12 [Nm]³⁾

FM220 230V AC and integrated limit switches FM24 24V AC/DC and integrated limit swit-

ches

Spindle extensions for customer-supplied actuators

SM \varnothing 18 mm for SM actuators FM 12 x 12 mm for FM actuators L150 \varnothing 12 mm, 150 mm long for

Straps for combining two JK multileaf dampers must be ordered separately:

U-LU1 for widths < 1000 mm same width arranged one upon the other!
U-LN1 for heights < 1005 mm same heigth arranged

U-LN2 for heights ≥ 1005 mm | alongside!

Specification text

Multileaf dampers made of galvanised sheet steel are control and shut-off dampers for ventilation and air conditioning systems. With hollow blades profiled for optimum flow, external opposed / external parallel / internal parallel linkage, galvanised actuator spindles in plastic / brass bushings. All-around, canted frame with $120\ \text{mm}\ /\ 180\ \text{mm}$ length and with connecting flanges for installation between ducts, on walls or ceilings. With adjusting lever and locking device / electrical actuator / electrical spring return actuator / with auxiliary switches. With wall mounting frame and counter flange / counter flanges. Also includes connecting straps required to install two multileaf dampers either one upon the other / alongside.

. pieces Volume flow rate: m³/h WILDEBOER® Manufacturer: Type: ιTΚ ... x ... Dimension W x H Complete with fasteners supply: install:

Delete text in non-bold type as required!