

Electronic

VRup/VRpro volume

for ventilation and air conditioning systems.

Versatile.

- Sizes DN 100 to DN 400.
- Operating voltage: 24 V AC/DC.
- Operation modes: Constant, 3-stage, variable (0 10 V, 2 10 V, adjustable).
- Leak tightness classes according to DIN EN 1751: Casing C, damper 3 and 4.

controller

- Versatile variants for outstanding installation
- Communication: analogue, with bus capability (MP, KNX, LON, MOD).
- pressure sensor: dynamic, static.
- Actuator: Standard speed, high speed, emergency operation via spring return.

Overview

Electronic VRpro volume flow controller Pages 15 to 26 and 27 to 31

Product features		VRup	VRpro
Standard speed (110 to 150 s)		•	•
Actuators	High speed (2.5 to 4 s)		•
	Spring return (150 s, 20 s spring)		•
	analogue	•	•
	MP-Bus [®]	•	•
Communication	KNX	•	
	LonWorks [®]	•	
	Modbus RTU	•	
	dynamic (thermal measurement process) - comfort air - slightly dust-laden air	•	•
Sensors	static (membrane measurement method) - comfort air - slightly dust-laden air - heavily dust-laden air		•
Installation	Consoles: - manually foldable - relocatable		•
	Lip seals on both sides	•	•
	Insulation:		
Options	 prepared for on-site insulation factory-mounted insulation 	•	•
	Factory presets	•	•
	SRC duct silencer	•	•

VRup

VRup volume flow controller

Description

VRup volume flow controllers are designed for constant and variable volume in ventilation and air conditioning systems. They can be installed and operated at any position in a supply air and exhaust air ventilation duct. The casing and control mechanism are made of galvanised sheet steel. The damper blade that regulates the volume is supported centrally and has a peripheral gasket. The bearing axes are made of stainless steel and are guided in special bearing bushes. The measuring cross is made of aluminium.

Five 24 V AC/DC actuators are available.

- Operation of the AN actuator is based exclusively on analogue control.
- The MP actuator can be controlled via MP-Bus[®] or by analogue control and can be adjusted via an NFC interface.
- The KNX, LON, MOD actuators operate exclusively in their corresponding bus modes.

All actuators support the "Constant", "Variable 0 - 10 V, 2 - 10 V and adjustable" and "3-stage" operation modes.

Overrides, parallel operation and sequential circuits are possible.

Factory settings can be ordered. Changes can be made on site using a programming unit, also in combination with a PC.

The volume controllers operate to a high degree of precision with roughly only a $\pm 5\%$ to $\pm 20\%$ deviation from the actual volume thus maintaining constant volume throughout the entire pressure range of 5 Pa to 1000 Pa.

Size	V _{limit}	V _{start}	V_{nom}	Ød	L	A_A	K1
DN	[m³/h]	[m³/h]	[m³/h]	[mm]	[mm]	[m²]	[mm]
100	31	42	340	99	329	0.008	-
125	50	59	530	124	329	0.012	-
160	85	103	870	159	329	0.020	-
200	140	162	1360	199	329	0.031	13
250	224	281	2120	249	406	0.049	-
315	366	433	3370	314	456	0.078	21
400	586	806	5430	399	551	0.126	14

L1 = 40 mm; from DN \ge 250 L1 = 60 mm

- 1 Duct casing
- 2 Actuator
- 3 Damper blade
- 4 Measuring cross
- 5 Service port for programming unit
- 6 Lip seal (optional)
- 7 Acoustic insulation with sheet metal jacket *(optional)*

Options

- Lip seals on both sides
- prepared for on-site insulation
- Acoustic insulation with sheet metal jacket, factory-mounted
- Factory presets ⇒ see page 13
- SRC duct silencer, available in 600 mm and 900 mm lengths

VRup volume flow controller Technical data, nomenclature

Technical data

VRup

 Nominal sizes: 		DN100, DN125, DN160, DN200, DN250, DN315, DN400			
 Area of application: 					
 Volume 	range:	42 m³/h*) to 5430 m³/h*)			
 Flow velocit 	y in A _A :	1.50 m/s* ⁾ to 12 m/s			
Pressure cont	rol range:	5 Pa to 1000 Pa			
 Maximum 	pressure:	2000 Pa			
Leak tightness	s according to DIN EN 1	751:			
 Casing: 		Class C			
• dan	nper	DN100 and DN125: Class 3; DN160 to DN400: Class 4			
• Ambient cond	itions:				
 Temperature 	e:	0 to +50°C			
 Moisture: 		up to 95%, non-condensing			
Operating volt	age:	24 V AC/DC, -10% +20%			
Power consur	nption, sizing, running ti	me to a displacement of roughly 90°:			
 Actuators 	DN100 to DN250:	2 W, 4 VA (max. 8 A @ 5 ms), approx. 120 to 150 s			
	DN315 to DN400:	3 W, 5 VA (max. 8 A @ 5 ms), approx. 120 to 150 s			
Control:					
 Reference s 	ignal, analogue:	0 - 10 V DC, 2 - 10 V DC, adjustable (0 – 32 V DC)			
 Actual value 	e signal, analogue:	0 - 10 V DC, 2 - 10 V DC, adjustable (0 – 10 V DC)			
Bus operation:		MP-Bus [®] , KNX, LonWorks [®] , Modbus RTU			
Protection class:		III protective extra-low voltage			
 Protection rati 	ng:	IP 54			
 Safety: 		EMC CE in accordance with 2014/30/EG			
*) depends on size					

Nomenclature

Nomenciature					
V	[m ³ /b] \/olume		Δp_S	[Pa]	Static pressure drop
V			L _{WA}	[dB(A)]	A-weighted sound power level
V _{limit}	[m ² /n] Minimum volume to be	a	Lwoot	[dB(A)]	Octave sound power level
V _{start}	[m³/h] Minimum adjustable volume		Lp	[dB]	Sound pressure level
V _{nom}	[m³/h] Maximum adjustable volume		L _{p(A)}	[dB(A)]	A-weighted sound pressure level
V _{start} to V _{nom}	Operating range of volume controller		Y	[V]	Reference signal (variable set point input)
V _{ref.} V _{min.} V _{mid} , V _{max}	[m ³ /h] Reference volume		UG	[V]	Lower limit of Y and U
V _{actual}	[m³/h] Actual volume		OG	[V]	Upper limit of Y and U
V _A	[m/s] Flow velocity in A _A		U	[V]	Actual value signal
A _A	[m ²] cross-section $A_A = \pi/4 \cdot DN^2$				

Features

VRup volume flow controller

controls the volume via the pressure acting on the measuring cross assisted by a compact actuator which incorporates a sensor and the control technology, in addition to the actuator. Each actuator is equipped with LED status displays, an interlock bypass to allow manual adjustment and a service port. The sensor operates according to a dynamic measurement principle. Depending on the pressure drop at the measuring cross, a small volume of air This is proportional to the pressure. It is thermally detected and is a measure for the volume .

In addition to a range of actuators, optional lip seals and acoustic insulation variants are available.

Basic version:

The actuator is mounted in a space-saving manner close to the duct casing.

Option:

The VRup volume controller is prepared **for on-site insulation.** The actuator is positioned at a distance of roughly 50 mm from the duct casing for this purpose.

VRup

Option:

VRup volume controller **with** factory-mounted **acoustic insulation** for thermal insulation and reduction of external sound radiation.

All illustrations show VRup volume controllers with the AN actuator and lip seals!

Option:

SRC duct silencer for volume flow controller for reduction of noise in the ventilation duct.

Maximum reduction of

noise with a

			Sound atter	nuator length
Size	Outer diameter	L1	L [n	nm]
DN	Ø [mm]	[mm]	600	900
100	200	40	-27 dB	-31 dB
125	225	40	-25 dB	-28 dB
160	260	40	-22 dB	-26 dB
200	300	40	-20 dB	-25 dB
250	355	40	-18 dB	-22 dB
315	415	40	-16 dB	-20 dB
400	500	65	_	-20 dB

Operation modes (1)

Function of operation modes

To use the operation modes, the required electrical connections must have been established and the corresponding parameters The volume control is applied as soon as the sensor in the actuator detects a pressure.

Uncontrolled control states, e.g. unwanted closing, can be avoided by specifying the reference volume from V_{limit} . The control accuracy is achieved in the volume range of V_{start} to V_{nom} . This must be allowed for by specifying V_{min} to ensure the control is for purpose.

Constant:

A reference volume is set for $V_{min} < V_{nom}$ in order to keep the controller constant.

• Variable:

A reference volume range with $V_{min} < V_{max}$ or $V_{min} = 0 \text{ [m}^3/\text{h]}$ and $V_{max} \ge 20\% V_{nom}$ is set. Volume which are to be kept constant V_{ref} can be within this range via a reference signal Y [V].

With the analogue actuators AN and MP, this is applied on line 3.

Actuators MP, KNX, LON, MOD \Rightarrow page 11

Reference signal Y

• 0 – 10 V

- If V_{min} = 0 [m³/h] is set, the damper blade closes completely when Y = 0 to 0.5 V.
 The control function starts from Y ≥ 0.5 V. Illustration based on example V_{min} = 0% and V_{max} = 30%.
- If $V_{min} > 0 \text{ m}^3$ /h is set, the control function starts from Y = 0 V without closing at this value. In this case, observe the switching threshold at 0.5 V! Illustration based on example V_{min} = 42% and V_{max} = 75%.
- Calculate the reference volume flow V_{ref} for reference signal Y^* : $V_{ref} [m^3/h] = V_{min} [m^3/h] + (V_{max} [m^3/h] - V_{min} [m^3/h]) \cdot Y [V] : 10 V$ [1]

• 2 – 10 V

- If 0 V ≤ Y ≤ 0.1 V, the damper blade closes completely. If 0.1 V ≤ Y ≤ 2 V, the control function starts with V_{min} . Illustration based on example $V_{min} = V_{limit}$ and $V_{max} = V_{nom}$.
- If $V_{min} = 0 \text{ m}^3/\text{h}$ is set, the damper blade closes completely when Y = 0 to 2 V. The control function starts from Y ≥ 2 V.
- Calculate the reference volume flow V_{ref} for reference signal Y*): $V_{ref} [m^3/h] = V_{min} [m^3/h] + (V_{max} [m^3/h] - V_{min} [m^3/h]) \cdot (Y [V] - 2 V) : 8 V$ [2]
- Adjustable (Y from UG = 0 to 30 V DC up to OG = 2 to 32 V DC) UG and OG can be adjusted in integer increments; in doing so OG must always be 2 V higher than UG.
 - If UG = 0 V, the functions correspond to 0 to 10 V, but in combination with OG instead of 10 V.
 - If UG > 0 V and if 0 V ≤ Y ≤ 0.1 V, the damper blade closes completely.
 - If 0.1 V ≤ Y ≤ UG V, the control function starts with V_{min} .
 - If V_{min} = 0 m³/h is set, the damper blade closes completely when Y = 0 up to UG V.
 The control function starts from Y ≥ UG V. Illustration based on example 2 to 8 V with V_{min} = 0% and V_{max} = V_{nom}.
 - Calculate the reference volume flow V_{ref} for reference signal Y^{*} : $V_{ref} [m^3/h] = V_{min} [m^3/h] + (V_{max} [m^3/h] - V_{min} [m^3/h]) \cdot (Y [V] - UG [V]) / (OG [V] - UG [V])$ [3]
- *) Volume in [% V_{nom}] instead of in [m³/h] can also be used. \Rightarrow see examples on pages 8 and 9 The results of the equation apply for V_{ref} > V_{limit}.

Operation modes (2) / ACTUAL volume

• 3-stage:

The 3-stage operation is a straightforward alternative to the constant or variable operation, especially with analogue controlled volume controllers. Three volume can be and maintained constant with V_{min} , V_{mid} and V_{max} . The value for V_{min} can also be set to 0 m³/h for full closing.

This mode requires the corresponding actuator settings and special 24 V AC connections. \Rightarrow see page 10

Override

Overrides require corresponding actuator settings and electrical connection of 24 V AC/DC voltage signals. Analogue and bus controls can be used.

The signals override all operation modes and allow the

Actual value signal U

With analogue control of the actuators AN and MP, an actual value signal U which is proportional to the actual volume V_{act} is applied at line 5^{*}) for display of the external volume and as reference signal for sequential circuits. It is proportional to the maximum volume V_{nom} and does not depend on the settings at the volume controller.

The voltage range is adjustable from UG = 0 to 8 V DC up to OG = 2 to 10 V DC.

*) In bus mode, line 5 is required for data communication! \Rightarrow see page 11

The following fundamentally applies:

$$V_{act} [m^{3}/h] = V_{nom} [m^{3}/h] \cdot (U [V] - UG [V]) : (OG [V] - UG [V])$$

$$U [V] = UG [V] + (OG [V] - UG [V]) \cdot V_{act} [m^{3}/h] : V_{nom} [m^{3}/h]$$
[1b]

1

2

3

4

The following applies for volume control in the voltage ranges 0 - 10 V and 2 - 10 V:

- For constant operation, the actual value signal U can be ordered in these two settings.

- The voltage range of the actual value signal U is adapted to the reference signal Y for variable operation.

0

The formulas [1a] and [1b] are used in both cases:

$$0 - 10 \text{ V}: \text{ V}_{act} [\text{m}^3/\text{h}] = \text{V}_{nom} [\text{m}^3/\text{h}] \cdot \text{U} [\text{V}]: 10 \text{ V}$$
 [2a]

$$U[V] = 10 V \cdot V_{act} [m^3/h] : V_{nom} [m^3/h]$$
 [2b]

2 – 10 V:
$$V_{act} [m^3/h] = V_{nom} [m^3/h] \cdot (U [V] - 2 V) : 8 V$$
 [3a]

$$U[V] = 2 V + 8 V \cdot V_{act} [m^{3}/h] : V_{nom} [m^{3}/h]$$
[3b]

If the upper limit OG of the reference signal Y is set higher than 10 V, the actual value signal U is limited to 0 - 10 V; the formulas [2a] and [2b] apply.

The actual value signal U = 2 - 10 V is set in 3-stage operation; the formulas [3a] and [3b] apply.

5

Actual value signal U [V]

6

7

8

9

enforced during variable operation. \Rightarrow see page 11

damper blade to be fully opened or closed. The operating

stage V_{max} can also be enforced during constant oper-

ation, and the operating stages V_{\min} and V_{\max} can be

10

Stand-alone operation, parallel operation and Master/Slave sequential operation, examples (1)

During **stand-alone operation**, the volume controller is operated in one of the available operation modes.

During **parallel operation**, this two or more. The reference signals are always identical and electrically connected either individually or in parallel to line 3. When connected in parallel, controllers operate independently of one another. Reference volume V_{min} , V_{mid} , V_{max} can be adjusted independently of one another, and according to the size and operation modes of the controller. If changes are made to one controller, this does not the others.

Example 1: Stand-alone operation of volume flow controller and parallel operation with identical volume flow.

If the "Variably adjustable" operation mode is set to 2 to 8 V, the control range is controlled with Y = 2 to 8 V as reference signal.

Areference volume range is with $V_{min} = 35\% V_{nom}$ and $V_{max} = 70\% V_{nom}$. According to the formula [3] on page 6, the reference signal obtained with Y = 2 V is:

 V_{ref} [%] = 35% + (70% - 35%) • (2 V - 2 V) : (8 V - 2 V) = 35% V_{nom} With Y = 5.2 V as the selected reference signal between 2 and 8 V:

 V_{ref} [%] = 35% + (70% - 35%) • (5.2 V - 2 V) : (8 V - 2 V) = 54% V_{nom} With Y = 8 V as the largest reference signal:

 V_{ref} [%] = 35% + (70% - 35%) • (8 V - 2 V) : (8 V - 2 V) = 70% V_{nom}

Example 2: Parallel operation of volume flow controllers with constant volume flow differential

If the "Variably adjustable" operation mode is set to 2 to 8 V, the control range is controlled with Y = 2 to 8 V as reference signal.

A reference volume range with V_{min} = 35% V_{nom} and V_{max} = 70% V_{nom} is d at controller 1.

According to the formula [3] on page 6, with, for example, Y = 5.2 V, the following is obtained as possible reference signal between 2 and 8 V:

 V_{ref} [%] = 35% + (70% - 35%) • (5.2 V - 2 V) : (8 V - 2 V) = 54% V_{nom}

If a constant volume which is 12% lower is to be established at controller 2, V_{min} = 23% V_{nom} and V_{max} = 58% V_{nom} must be set at this controller. If Y = 5.2 V then

 V_{ref} [%] = 23% + (58% - 23%) • (5.2 V - 2 V) : (8 V - 2 V) = 42% V_{nom}

Example 3: Parallel operation of volume flow controllers with proportionally-equal volume flow differential

If the operation mode "Variable 0 – 10 V" is set at the controllers, the control range is controlled with Y = 0 to 10 V as reference signal. An initial reference volume

range with $V_{min} = 0\% V_{nom}$ and $V_{max} = 100\% V_{nom}$ is at controller 1. According to the formula [1] on page 6, with for example, Y = 4 V, the following

is obtained as possible reference signal between 0 and 10 V:

$$V_{ref}$$
 [%] = 0% + (100% - 0%) • 4 V : 10 V = 40% V_{nom}

If a volume which is 40% lower is to be established at controller 2, $V_{min} = 0\% V_{nom}$ and $V_{max} = 60\% V_{nom}$ must be set at this controller.

= 24% V_{nom}

If Y = 4 V, on the other hand, then:

V_{ref} [%] = 0% + (60% - 0%) • 4 V : 10 V

volume V_{ref} of another.

With analogue control, the **actual value signal U** on line 5 of the Master controller is fed on line 3 of the Slave controller as **reference signal Y**.

If "Variable 0 - 10 V", "Variable 2 - 10 V" or "Variably adjustable" is set at the Master, the same mode must be set at the Slave. If a Master is operating in the "Constant" operation mode, the Slave must be operated in the "Variable" operating mode and adapted to the output signal of the Master (0 - 10 V or 2 - 10 V). If the operation mode is set to "3-stage" at the Master, "Variable 2 - 10 V" must be set at the Slave.

Stand-alone operation, parallel operation and Master/Slave sequential operation, examples (2)

Example 4: Master/Slave sequential operation to volume flow controller with identical volume flow

The operation modes "Variable 0 - 10 V" are set at the **Master** and **Slave**. The Master is then controlled with Y = 0 to 10 V.

According to page 6, formula [1], the following is obtained for V_{min} = 35% V_{nom} and V_{max} = 70% V_{nom} , and also with e.g. Y = 7.6 V:

 V_{ref} [%] = 35% + (70% - 35%) • 7.6 V : 10 V = 62% V_{nom}

When $V_{act} = V_{ref}$, according to page 6, formula [2b] the actual value signal is: U [V] = 10 V • V_{act} : V_{nom} = 10 V • 62% : 100% = 6.2 V

The Master a voltage of 6.2 V as reference signal Y to the Slave. V_{max} = 20% to 100% • V_{nom} can be variably adjusted there.

If $V_{max} = 100\% V_{nom}$ is set at the Slave, according to formula [1] on page 6: $V_{ref} [\%] = 0\% + (100\% - 0\%) \cdot 6.2 V : 10 V = 62\% V_{nom}$

If the actual volume at the Master does not reach the reference volume

LDEBOER[®]

VRup

, the Slave follows the actual volume \Rightarrow see case 2

Example 5: Master/Slave sequential operation for volume flow controller with identical proportionally-equal volume flow

Master and **Slave** are set to 2 to 8 V in the "Variably adjustable" operation mode. The Master is set to $V_{min} = 0\% V_{nom}$ and $V_{max} = 70\% V_{nom}$ and controlled with Y = 2 to 8 V.

Where Y = 7.3 V, according to formula [3] on page 6

 V_{ref} [%] = 0% + (70% - 0%) • (7.3 V - 2 V) : (8 V - 2 V) = 62% V_{nom} Where $V_{act} = V_{ref}$ according to formula [1b] on page 7, the corresponding actual

value signal is: U [V] = 2 V + (8 V - 2 V) \cdot 62% : 100% = 5.7 V

The Master a voltage of 5.7 V as reference signal Y to the Slaves. V_{max} = 20% to 100% • V_{nom} can be variably adjusted there.

If $V_{max} = 100\% V_{nom}$ and $V_{min} = 0\% V_{nom}$ is set at **Slave 1**, according to formula [3] on page 6:

 V_{ref} [%] = 0% + (100% - 0%) • (5.7 V - 2 V) : (8 V - 2 V) = 62% V_{nom} If V_{max} = 60% V_{nom} and V_{min} = 0% V_{nom} is set at **Slave 2**, according to formula [3] on page 6:

 V_{ref} [%] = 0% + (60% - 0%) • (5.7 V - 2 V) : (8 V - 2 V) = 37% V_{nom}

Electrical connections (1)

Electrical connections

Constant volume flow control

The "Standard" CAV function is preset

Variable volume flow control

The "Standard" CAV function is preset

3-stage volume flow control:

The "NMV-D2M compatible" CAV function is preset. Pay attention to mutual interlocking of the contacts!

Connection in parallel

Sequential circuit

Electrical connections (2)/bus operation

Electrical connections

Overrides

in the "Constant" or "Variable" operation mode

In "3-stage" operation mode

The "Standard" CAV function is preset

The "NMV-D2M compatible" CAV function is preset.

With overrides, pay attention to mutual interlocking of the contacts!

The CAV function is set at the factory as in the order data; changes can be made via PC and software.

Bus operation

The VRup volume controller can be incorporated into a higher-level building control system via the **MP**-Bus. The bus connection at the MP actuator is established using conventional 3-core installation cables to lines 5 and 1 (GND). The supply voltage and bus signal are transmitted.

Function: The bus operation starts automatically once an address has been assigned. The actuator MP at the VRup volume controller represents one of a maximum of 8 possible slaves. They receive their digital reference signal from the MP master of the building control.

The bidirectional function of the MP-Bus transfers the address, commands, set points, overrides and settings such as V_{min} and V_{max} to each slave.

Each slave sends back its iden and settings, the actual volume , the damper blade setting, status messages and, if applicable, the value of a connected sensor. The reference variable is d during MP-Bus operation in %. It is $0\% = V_{min}$, $100\% = V_{max}$.

The MP operation mode is therefore similar to the "Variable 0 – 10 V" operation mode, the only being that 0% to 100% is used instead of 0 V and 10 V. \Rightarrow see page 6

A parallel operation and a sequential circuit can also be put into via the MP-Bus control with identical or varying volume

 \Rightarrow see examples 1 to 5, pages 8 and 9

In MP-Bus operation, line 3 can be used for additional functions:

- For connection of analogue sensors or switches. In this case the MP actuator performs the role of an A/D converter and delivers digitalised sensor or switching signals to the Master.
- For local overrides for complete opening and closing or for the operating stage V_{max} . The reference variable of the MP-Bus is overridden in this instance.

VRup volume controllers can also be supplied with actuators for **KNX**, **LON** and **MOD**. They operate exclusively in bus operation and their options are more or less the same as those described for the MP-Bus.

VRup

Operation

Programming unit ZTH-EU

The VRup volume controller can be adjusted and operated using the ZTH-EU programming unit.

If voltage is supplied to the volume controller and the programming unit is connected with the corresponding cable, it is started and the data of the connected actuator is read out.

Connection to the service port

Connect the ZK1-GEN connection cable (3 m) enclosed with the programming unit to the service port of the actuator.

Actual values, changes to the settings, e.g. V_{min} , V_{max} , can be displayed. The keyboard can be used for control, e.g. to override the VRup volume controller.

If bus operation is active, this is interrupted while the ZTH-EU programming unit is connected.

Connection to the connecting duct

Connect the ZK2-GEN connection cable (5 m) enclosed with the programming unit to the terminals on the actuator, or to the relevant terminals at the control cabinet.

It is advisable to route the connection to an accessible location.

Connection of PC and ZTH-EU programming unit

A comprehensive range of settings can be made using the ZTH-EU programming unit and a PC. The programming unit serves as interface between the actuator and the PC. A USB cable is supplied with the programming unit.

• NFC - interface

MP actuators can be operated via the NFC interface using an NFC-compatible Android Smartphone with an Assistant App.

Settings can be and actual values read out.

The actuator does not have to be connected to a power supply in order to do this.

Order data

	VRup		 -
DN size 100 / 125 / 160 / 200 / 250 / 315	/ 400		Duct silencer
24 V AC/DC actuator			(attachment on site
- Analogue - Standard -	AN		SRC 600 (up to I
- MP-Bus [®]	MP		SRC 900
- KNX-Bus	KNX		\Rightarrow see pages 5 and
- LonWorks [®]	LON		
- Modbus	MOD		
Option: Lip seal			
- with two lip seals			
Option: Acoustic insulation variants	\Rightarrow see page 5		
- for on-site insulation	BD		
- with acoustic insulation	DS		
Operation mode			
- constant (U = 0 – 10 V)	K01		
- constant (U = 2 – 10 V)	K21		
- 3-stage:	3P		
- variable, $0 - 10 \text{ V}$ - standard -	01		
- variable, 2 – 10 V	21		
- variable, adjustable	VA		
- lower limit UG = 0 to 30 V	UG =		
- upper limit OG = 2 to 32 V	OG =		
Option: Factory presets			
for reference volume [m³/h] 1)		
- constant reference volume	V _{const} =		
- minimum reference volume	V _{min} =		
- average reference volume	V _{mid} =		
- maximum reference volume	V _{max} =		
Option: Plant installation height	1)		
values from 0 m to 3000 m	AH =		

¹⁾ The volume controllers are preset for a plant installation height of 120 m as **standard** and for:

 V_{const} = 50% V_{nom} ; or for: V_{min} = 25% V_{nom} ; V_{mid} = 50% V_{nom} ; V_{max} = 75% V_{nom}

Other customer-specific factory presettings are possible! The following limits must be observed, depending on the operation mode:

Constant: $V_{\text{limit}} \leq V_{\text{const}} \leq V_{\text{nom}}$

Variable: $V_{min} = 0 \text{ [m^3/h]} \text{ or } V_{limit} \le V_{min} < V_{max} \text{ and } 20\% V_{nom} \le V_{max} \le V_{nom}$

3-stage: $V_{min} = 0 [m^3/h]$ or $V_{limit} \le V_{min} < V_{mid} < V_{max} \le V_{nom}$

The presettings are omitted with KNX, LON, MOD!

volume flow rates. Cis installation in circ exhaust air ventilats casing and damper by Centrally supported with stainless steel peripheral seal on t lation duct.	w controller for cons rcular design for pos ular ventilation duct ion and air condition lade made of galvani damper blade for vo bearing axes in speci he damper blade to si	tant and variable ition-independent ts for supply and ing systems. During sed sheet stee blume flow contro- al bushings. Wi hut off the vent	le nt nd ct 1. ol th i-	
Measuring cross made	of aluminium acting	as a differentia	al	
pressure sensor. High	h degree of accuracy	throughout enti:	re	
volume flow range. Th	e volume flow must be	kept constant	at	
variable pressures be	etween 5 and 1000 Pa.			
24 V AC/DC actuator w	ith LED status indicat	tors, for analog	ue	
actuation/analogue ac	ctuation and MP-Bus®/K	INX-Bus/LonWorks	®/	
Modbus. Constant/var	riable/3-stage operat	tion modes, wi	th	
0 to 10 V, 2 to 10 V	or adjustable.			
Can be used for for h	igher-level overrides	to open and clo	se	
the damper blade and	for parallel and seq	quential operation	on	
actual volume flow wi	th acoustic insulation	on and sheet met	01	
iacket with lip seals	s		aı	
Leak tightness class (C for the casing and le	ak tightness cla	ss	
3 or 4 for the damper	blade each accordin	a + c DIN EN 175	1	
Po	Didde, caon accorai	Ig to Din In 175	±.	
FC				
Volume flow:	m³/h to .	m³/h		
Volume flow: Maximum pressure los	m³/h to . s:	m³/h Pa		
Volume flow: Maximum pressure los Maximum sound power	m³/h to . s: level	m³/h Pa		
Volume flow: Maximum pressure los Maximum sound power Flow noise	m ³ /h to . ss: level dB(A)	m³/h Pa		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s	m ³ /h to . ss: level dB(A) silencer	m³/h Pa		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise	m ³ /h to . ss: level dB(A) silencer dB(A)	m³/h Pa		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer:	m ³ /h to . ss: level dB(A) silencer dB(A) WILDEBOER	m³/h Pa		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type:	m ³ /h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup	m³/h Pa		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size:	m ³ /h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN	m³/h Pa		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings	m ³ /h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN deliver:	m³/h Pa		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings	m ³ /h to . s: level dB(A) silencer dB(A) WILDEBOER VRup DN s deliver:	m³/h Pa install:		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings	m ³ /h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN deliver:	m³/h Pa install:		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings	<pre> m³/h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN s deliver:</pre>	m³/h Pa install:		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings pc SRC duct silencer	m ³ /h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN deliver: 600 / 900	m³/h Pa install:		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings pc SRC duct silencer	m ³ /h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN deliver: 600 / 900	m³/h Pa install: deliver:		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings pc SRC duct silencer	m ³ /h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN deliver: 600 / 900	m³/h Pa install: deliver: install:		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings pc SRC duct silencer	m ³ /h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN deliver: 600 / 900	m³/h Pa install: deliver: install:		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings pc SRC duct silencer	<pre> m³/h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN s deliver: </pre>	m ³ /h Pa install: deliver: install:		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings pc SRC duct silencer	<pre> m³/h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN s deliver: c 600 / 900</pre>	m ³ /h Pa install: deliver: install:		
Volume flow: Maximum pressure los Maximum sound power Flow noise including SRC duct s Radiated noise Manufacturer: Type: Size: complete with fixings pc SRC duct silencer pc ZTH-EU programmin and operation.	<pre> m³/h to . ss: level dB(A) silencer dB(A) WILDEBOER VRup DN s deliver: c 600 / 900 </pre>	m ³ /h Pa install: deliver: install: t deliver:		

Select texts not highlighted in bold as required!

.

.

.

Description

VRpro volume flow controllers are designed for constant and variable volume in ventilation and air conditioning systems. They can be installed and operated at any position in a supply air and exhaust air ventilation duct. The casing and control mechanism are made of galvanised sheet steel. The damper blade that regulates the volume is supported centrally and has a peripheral gasket. The bearing axes are made of stainless steel and are guided in special bearing bushes. The measuring cross is made of aluminium.

The control components consist of static or dynamic sensors, actuators with standard speed, high speed or spring return and a controller. The sensors and controllers are to mounting brackets which can be manually folded or moved if space is restricted.

The control and electrical connection of the VRpro volume controller is achieved by analogue means, or via MP-Bus[®].

All control components support the "Constant", "Variable 0 – 10 V, 2 – 10 V adjustable", and "3-stage" operation modes.

Overrides, parallel operation and sequential circuits are possible.

Factory settings can be ordered. Changes can be made on site using a programming unit, also in combination with a PC.

The volume ow controllers operate to a high degree of precision with roughly only a \pm 5% to \pm 20% deviation from the actual volume ow; thus maintaining constant volume ows throughout the entire pressure range of 5 Pa to 1000 Pa.

Size	V _{limit}	V _{start} 1)	V _{start} 2)	V_{nom}	Ød	L	A _A	K1
DN	[m³/h]	[m³/h]	[m³/h]	[m³/h]	[mm]	[mm]	[m²]	[mm]
100	39	44	65	340	99	329	0.008	-
125	61	71	109	530	124	329	0.012	-
160	104	120	184	870	159	329	0.020	-
200	172	198	260	1360	199	329	0.031	13
250	275	317	484	2120	249	406	0.049	-
315	448	517	825	3370	314	456	0.078	21
400	718	829	1318	5430	399	551	0.126	14

T.

L1 = 40 mm; from DN \ge 250 L1 = 60 mm

- 1 Duct casing
- 2 Actuator
- 3 Sensor with removable mounting console
- 4 Controller with removable mounting console

VRpro

- 5 Damper blade
- 6 Measuring cross
- 7 Service port for programming unit
- 8 Lip seal (Option)
- 9 Acoustic insulation with sheet metal jacket(Option)

Options

- Lip seals on both sides
- prepared for on-site insulation
- Acoustic insulation with sheet metal jacket, factory-mounted
- Factory presets ⇒ see page 25
- SRC duct silencer, available in 600 mm and 900 mm lengths

Values with dynamic sensor
 Values with static sensor

User Manual 3.6 (2017-07) 15

VRpro volume flow controller Technical data, nomenclature

Technical data

 Nominal sizes: 	DN100, DN125, DN160, DN200, DN250, DN315, DN400
 Area of application: 	
Volume range:	44 m³/h*) to 5430 m³/h*)
 Flow velocity in A_A: 	1.55 m/s* ⁾ to 12 m/s
Pressure control range:	5 Pa to 1000 Pa
Maximum pressure:	2000 Pa
Leak tightness according to DIN EN 1751:	
• Casing:	Class C
• damper	DN100 and DN125: Class 3; DN160 to DN400: Class 4:
Ambient conditions:	
Temperature:	0 to +50°C
Moisture:	up to 95%, non-condensing
 Operating voltage: 	24 V AC/DC ±10%
• Power consumption, sizing, running tin	ne to a displacement of roughly 90°:
 VRpro with standard speed actuator: 	DN100 to DN400: 4.6 W, 8.6 VA; approx. 150 s
 VRpro with high speed actuator: 	DN100 to DN250: 14.1 W, 25.6 VA; approx. 2.5 s
DN315 to DN400: 13.1 W, 20.6 VA;	approx. 4 s
 VRpro with spring return actuator: 	DN100 to DN400: 9.6 W, 13.6 VA; approx. 150 s (actuator)
	approx. 20 s (spring return)
Control:	
 Reference signal, analogue: 	0 – 10 V DC, 2 – 10 V DC, adjustable (0 – 10 V DC)
 Actual value signal, analogue: 	0 – 10 V DC, 2 – 10 V DC, adjustable (0 – 10 V DC)
 Bus operation: 	MP-Bus [®]
 Protection class: 	III protective extra-low voltage
 Protection rating: 	IP 40
Safety:	EMC CE in accordance with 2014/30/EG
*) depends on size	

Nomenclature

V	[m³/h]	Volume			Dp _S	[Pa]	Static pressure drop
V _{limit}	[m³/h]	Minimum volume	to be	d	L_{WA}	[dB(A)]	A-weighted sound power level
V _{start}	[m³/h]	Minimum adjustable v	olume		L_{W-oct}	[dB(A)]	Octave sound power level
V _{nom}	[m³/h]	Maximum adjustable v	volume		Lp	[dB]	Sound pressure level
V _{start} to V _{nom}	Operat	ting range of volume	controller		L _{p(A)}	[dB(A)]	A-weighted sound pressure level
V _{ref,} V _{min,} V _{mid} , V _{max}	[m³/h]	Reference volume			W	[V]	Reference signal (variable set point input)
V _{actual}	[m³/h]	Actual volume			UG	[V]	Lower limit for w and U5
V _A	[m/s]	Flow velocity in A _A			OG	[V]	Upper limit for w and U5
A _A	[m²]	cross-section A	_A = p/4 • DN ²		U5	[V]	Actual value signal

Features

VRpro volume flow controller

Control the volume based on the pressure at the measuring cross using the control components controller, sensor and actuator. The controllers are equipped with LED status indicators and a service connection; the actuators can be operated manually.

With the dynamic sensor, a small quantity of the air volume passes through the sensor, depending on the ential pressure drop at the cruciform. This is proportional to the pressure and is detected thermally.

Air does not through the static sensor. The

pressures present at the measuring cross are guided into the measuring chamber of the sensor which is divided by a membrane. The of the membrane which is proportional to the tial pressure is inductively recorded. The sensor signals are a measure of the volume

In addition to a range of sensors and actuators, lip seals on both sides and various insulation variants are available.

Basic version:

Control components and mounting brackets are mounted **close to the duct casing in a space-saving manner**.

Option:

The VRpro volume controller is prepared **for on-site acoustic insulation.** For this, the control components and mounting brackets are positioned at a distance of roughly

Option:

VRpro volume controller with factory-mounted **acoustic insulation** for thermal insulation and reduction of external sound radiation. VRpro

50 mm from the duct casing.

All illustrations show VRpro volume controllers with spring return actuator, dynamic sensor and lip seals.

Option:

SRC duct silencer for volume flow controller for reduction of noise in the ventilation duct.

Maximum reduction of		m reduction of ne	oise wi	th a	
				Sound atter	nuator length
	Size	Outer diameter	L1	L [n	nm]
	DN	Ø [mm]	[mm]	600	900
	100	200	40	-27 dB	-31 dB
	125	225	40	-25 dB	-28 dB
	160	260	40	-22 dB	-26 dB
	200	300	40	-20 dB	-25 dB
	250	355	40	-18 dB	-22 dB
	315	415	40	-16 dB	-20 dB
	400	500	65	-	-20 dB

Operation modes (1)

Function of operation modes

To use the operation modes, the required electrical connections must have been established and the corresponding parameters The volume control is applied as soon as the sensor transmits a pressure above the leak low volume limit of 3 Pa; which corresponds to the volume V_{limit}.

Specifying a reference volume above V_{start} prevents uncontrolled control states, e.g. unintentional closing, and achieves the accuracy in the volume range up to V_{nom} . This must be observed to ensure that control in the lower volume range is for purpose.

Constant:

• Variable:

A reference volume range with V_{min} < V_{max} or V_{min} = 0 [m³/h] and $V_{max} \ge 30\%$ V_{nom} is set.

Volume which are to be kept constant by the controller V_{ref} can be specwithin these limits via a reference

signal Y [V]. With the VRP-M controller, this is applied at terminal 3. MP-Bus operation \Rightarrow page 23

Reference signal w

• 0 – 10 V

VRpro

- If V_{min} = 0 [m³/h] is set, the damper blade closes completely when w = 0 to V_{limit}: V_{max} 10 V. The control function starts from w ≥ V_{limit}: V_{max} • 10 V. Illustration based on example V_{min} = 0% and V_{max} = 30%.
- If $V_{min} > 0 \text{ m}^3/\text{h}$ is set, the control function starts from w = 0 V at this value without closing. Illustration based on example $V_{min} = 42\%$ and $V_{max} = 75\%$.
- Calculate the reference volume flow V_{ref} for reference signal w*): V_{ref} [m³/h] = V_{min} [m³/h] + (V_{max} [m³/h] - V_{min} [m³/h]) • w [V] : 10 V

[1]

[2]

• 2 – 10 V

- If 0 V \leq w \leq 0.1 V, the damper blade closes completely. If 0.1 V < w \leq 2 V, the control function starts with V_{min}. Illustration based on example V_{min} = V_{limit} and V_{max} = V_{nom}.
- If $V_{min} = 0 \text{ [m^3/h]}$ is set, the damper blade closes completely when w = 0 to V_{limit} : $V_{max} \cdot 8 V + 2 V$. The control function starts from $w \ge V_{limit}$: $V_{max} \cdot 8 V + 2 V$.
- Calculate the reference volume flow V_{ref} for reference signal w*):
 V_{ref} [m³/h] = V_{min} [m³/h] + (V_{max} [m³/h] V_{min} [m³/h]) (w [V] 2 V) : 8 V

• Adjustable (w from UG = 0 to 8 V DC to OG = 2 to 10 V DC)

UG and OG can be adjusted in integer increments, in doing so OG must always be 2 V more than UG.

- If UG = 0 V, the functions correspond to 0 to 10 V, but in combination with OG instead of 10 V.
- If UG > 0 V and if 0 V ≤ w ≤ 0.1 V, the damper blade closes completely.
 If 0.1 V < w ≤ UG V, the control function starts with V_{min}.
- If $V_{min} = 0 \text{ [m^3/h]}$ is set, the damper blade closes completely when w = 0 to $V_{limit} : V_{max} \cdot (OG UG) + UG$. The control function starts from $w \ge V_{limit} : V_{max} \cdot (OG - UG) + UG$. Illustration based on example 2 to 8 V with $V_{min} = 0\%$ and $V_{max} = V_{nom}$.
- Calculate the reference volume flow V_{ref} for reference signal w*):
 V_{ref} [m³/h] = V_{min} [m³/h] + (V_{max} [m³/h] V_{min} [m³/h]) (w [V] UG [V]) / (OG [V] UG [V])
- *) Volume in [% V_{nom}] instead of in [m³/h] can also be used. \Rightarrow see examples on pages 20 and 21 The results of the equation apply for V_{ref} > V_{limit}.

[3]

Operation modes (2) / ACTUAL volume

3-stage:

The 3-stage operation is a straightforward alternative to the constant or variable operation, especially with analogue controlled volume controllers. Three volume can be and maintained constant with V_{min} , V_{mid} and V_{max} . The value for V_{min} can also be set to 0 m³/h for full closing.

This mode requires the corresponding actuator settings and special 24 V AC/DC connections. \Rightarrow see page 22

Override

Overrides require electrical connections at terminals 6 and 7 with 24 V AC/DC voltage signals. Analogue and bus controls can be used.

The signals override all operation modes and allow the

Actual value signal U5

For analogue operation of the volume controller, an actual value signal U5 which is proportional to the actual volume V_{act} is available for external volume display and as reference signal for sequential circuits and is applied at terminal 5.

It is proportional to the maximum volume V_{nom} and does not depend on the settings at the volume controller.

The voltage range is adjustable from UG = 0 to 8 V DC up to OG = 2 to 10 V DC.

$$V_{act} [m^{3}/h] = V_{nom} [m^{3}/h] \cdot (U [V] - UG [V]) : (OG [V] - UG [V])$$

$$U5 [V] = UG [V] + (OG [V] - UG [V]) \cdot V_{act} [m^{3}/h] : V_{nom} [m^{3}/h]$$
[1b]

The following applies for volume control in the voltage ranges 0 - 10 V and 2 - 10 V:

- For constant operation, the actual value signal U5 can be ordered in these two settings.

- The voltage range of the actual value signal U5 is adapted to the reference signal w for variable operation. The formulas [1a] and [1b] are used in both cases:

0 – 10 V:	V _{act} [m³/h]	= V _{nom} [m³/h] • U [V] : 10 V	[2a]
-----------	-------------------------	--	------

U5 [V] = 10 V •
$$V_{act}$$
 [m³/h] : V_{nom} [m³/h] [2b]

$$2 - 10 \text{ V:} \quad V_{act} [\text{m}^3/\text{h}] = V_{nom} [\text{m}^3/\text{h}] \cdot (\text{U} [\text{V}] - 2 \text{ V}) : 8 \text{ V}$$

$$U5 [\text{V}] = 2 \text{ V} + 8 \text{ V} \cdot V_{act} [\text{m}^3/\text{h}] : V_{nom} [\text{m}^3/\text{h}]$$
[3b]

damper blade to be fully opened or closed. The operating stage V_{max} can also be enforced during constant operation, and the operating stages V_{min} and V_{max} can be enforced during variable operation. \Rightarrow see page 23

Actual value signal U5 [V]

 $\mathrm{V}_{\mathrm{act}}$ of one controller guides the reference volume

With analogue control, the actual value signal U5 at terminal

5 of the Master controller is fed to terminal 3 of the Slave

If "Variable 0 – 10 V", "Variable 2 – 10 V" or "Variably adjust-

able" is set at the Master, the same mode must be set at the

Slave. If a Master is operating in the "Constant" operation

mode, the Slave must be operated in the "Variable" operating

mode and adapted to the output signal of the Master (0 - 10 V)

or 2 – 10 V). If the operation mode is set to "3-stage" at the

Master, "Variable 2 – 10 V" must be set at the Slave.

VRpro volume flow controller

Stand-alone operation, parallel operation and Master/Slave sequential operation, examples (1)

ume

V_{ref} of another.

controller as reference signal w.

During **stand-alone operation**, the volume controller is operated in one of the available operation modes.

During **parallel operation** this two or more. The reference signals are always identical and electrically connected either individually or in parallel to terminal 3 (reference signal w). When connected in parallel, controllers operate independently of one another. Reference volume V_{min} , V_{mid} , V_{max} can be adjusted independently of one another, and according to the size and operation modes of the controller. If changes are made to one controller, this does not the others.

During Master/Slave sequential operation, the actual vol-

Example 1: Stand-alone operation of volume flow controller and parallel operation with identical volume flow

If the "Variably adjustable" operation mode is set at 2 to 8 V, the control range is controlled with w = 2 to 8 V as reference signal.

Areference volume range is with $V_{min} = 35\% V_{nom}$ and $V_{max} = 70\% V_{nom}$. According to the formula [3] on page 18, the reference signal obtained with w = 2 V is:

 V_{ref} [%] = 35% + (70% - 35%) • (2 V - 2 V) : (8 V - 2 V) = 35% V_{nom}

With w = 5.2 V as the selected reference signal between 2 and 8 V:

 $V_{ref} \, [\%] = 35\% + (70\% - 35\%) \bullet (5.2 \ V - 2 \ V) : (8 \ V - 2 \ V) \qquad = 54\% \ V_{nom}$ With w = 8 V as the largest reference signal:

 V_{ref} [%] = 35% + (70% - 35%) • (8 V - 2 V) : (8 V - 2 V) = 70% V_{nom}

Example 2: Parallel operation of volume flow controllers with constant volume flow differential

If the "Variably adjustable" operation mode is set at 2 to 8 V, the control range is controlled with w = 2 to 8 V as reference signal.

A reference volume range with V_{min} = 35% V_{nom} and V_{max} = 70% V_{nom} is d at controller 1.

According to the formula [3] on page 18, with, for example, w = 5.2 V, the following is obtained as possible reference signal between 2 and 8 V:

 $\begin{array}{l} V_{ref}\,[\%]=35\%+(70\%-35\%)\bullet(5.2~V-2~V):(8~V-2~V) & = 54\%~V_{nom} \\ \mbox{If a constant volume} & \mbox{which is 12\% lower is to be established at controller} \\ 2,~V_{min}=23\%~V_{nom} \mbox{ and } V_{max}=58\%~V_{nom} \mbox{ must be set at this controller}. \\ \mbox{If } w=5.2~V \mbox{ then} \end{array}$

$$V_{ref}$$
 [%] = 23% + (58% - 23%) • (5.2 V - 2 V) : (8 V - 2 V) = 42% V_{non}

Example 3: Parallel operation of volume flow controllers with proportionally-equal volume flow differential

If the operation mode "Variable 0 – 10 V" is set at the controllers, the control range is controlled with w = 0 to 10 V as reference signal.

An initial reference volume range with $V_{min} = 0\% V_{nom}$ and $V_{max} = 100\% V_{nom}$ is at controller 1.

According to the formula [1] on page 18, with, for example, w = 4 V the following is obtained as possible reference signal between 0 and 10 V:

$$V_{ref}$$
 [%] = 0% + (100% - 0%) • 4 V : 10 V = 40% V_{nom}

= 24% V_{nom}

If a volume which is 40% lower is to be established at controller 2, $V_{min} = 0\% V_{nom}$ and $V_{max} = 60\% V_{nom}$ must be set at this controller.

If w = 4 V, on the other hand, then:

100 12 11 90 10 [%] 80 Flow velocity v_A [m/s] 9 volume flow 70 8 Controller 1 and 2 60 7 50 6 5 40 4 Reference 30 3 20 2 10 0 0 10 0 2 3 4 5 6 8 9 Reference signal Y [V]

VRpro

Stand-alone operation, parallel operation and Master/Slave sequential operation, examples (2)

Example 4: Master/Slave sequential operation to volume flow controller with identical volume flow

The operation modes "Variable 0 - 10 V" are set at the **Master** and **Slave**. The Master is then controlled with w = 0 to 10 V.

According to page 18, formula [1], the following is obtained for V_{min} = 35% V_{nom} and V_{max} = 70% V_{nom} , and also with, for example, w = 7.6 V: V_{ref} [%] = 35% + (70% - 35%) • 7.6 V : 10 V = 62% V_{nom}

The Master a voltage of 6.2 V as reference signal w to the Slave. $V_{max} = 30\%$ to 100% • V_{nom} can be variably adjusted there.

If $V_{max} = 100\% V_{nom}$ is set at the Slave, according to formula [1] on page 18: $V_{ref} [\%] = 0\% + (100\% - 0\%) \cdot 6.2 V : 10 V = 62\% V_{nom}$

If the actual volume at the Master does not reach the reference volume

LDEBOER[®]

, the Slave follows the actual volume \Rightarrow see case 2

Example 5: Master/Slave sequential operation for volume flow controller with identical proportionally-equal volume flow

Master and **Slave** are set to 2 to 8 V in the "Variably adjustable" operation mode. The Master is set to $V_{min} = 0\% V_{nom}$ and $V_{max} = 70\% V_{nom}$ and controlled with w = 2 to 8 V.

If w = 7.3 V, according to formula [3] on page 18:

 V_{ref} [%] = 0% + (70% - 0%) • (7.3 V - 2 V) : (8 V - 2 V) = 62% V_{nom}

Where $V_{act} = V_{ref}$, according to formula [1b] on page 19, the corresponding actual value signal is:

U5 [V] = 2 V + (8 V - 2 V) • 62% / 100% = 5.7 V

The Master a voltage of 5.7 V as reference signal w to the Slaves. V_{max} = 30% to 100% • V_{nom} can be variably adjusted there.

If $V_{max} = 100\% V_{nom}$ and $V_{min} = 0\% V_{nom}$ is set at **Slave 1**, according to formula [3] on page 18:

 V_{ref} [%] = 0% + (100% - 0%) • (5.7 V - 2 V) : (8 V - 2 V) = 62% V_{nom}

If $V_{max} = 60\% V_{nom}$ and $V_{min} = 0\% V_{nom}$ is set at **Slave 2**, according to formula [3] on page 18:

 V_{ref} [%] = 0% + (60% - 0%) • (5.7 V - 2 V) : (8 V - 2 V) = 37% V_{nom}

Electrical connections (1)

Electrical connections

Constant volume flow control

Variable volume flow control

3-stage volume flow control:

Pay attention to mutual interlocking of the contacts!

Connection in parallel

Sequential circuit

VRpro

Electrical connections (2)/bus operation

Electrical connections

Overrides

In "Constant", "Variable" and 3-stage operation mode

If signals are applied simultaneously at terminals 6 and 7, the input at terminal 6 with the function "OPEN" has the overriding priority.

Bus operation

The electronic VRpro volume controller can be incorporated into a higher-level building control system via the **MP**-Bus. The bus connection at the VRP-M controller is established using conventional 3-core installation cables at terminal 4 and terminal 1 (GND). The supply voltage and bus signal are transmitted.

Function: The bus operation starts automatically once an address has been assigned. The VRP-M controller at the VRpro volume controller represents one of a maximum of 8 possible slaves. They receive their digital reference signal from the MP master of the building control. The bidirectional function of the MP-Bus transfers the address, commands, set points, overrides and settings such as V_{min} and V_{max} to each slave.

Each slave sends back its iden and settings, the actual volume , the damper blade setting, status messages and, if applicable, the value of a connected sensor. The reference variable is d during MP-Bus operation in %. It is $0\% = V_{min}$, $100\% = V_{max}$.

The MP operation mode is therefore similar to the "Variable 0 – 10 V" operation mode, the only being that 0% to 100% is used instead of 0 V and 10 V. \Rightarrow see page 18

A parallel operation and a sequential circuit can also be put into via the MP-Bus control with identical or varying volume

 \Rightarrow see examples 1 to 5, pages 20 and 21

In MP bus operation, terminal 3 can be used for additional functions:

- For connection of analogue sensors or switches. In this case, the VRP-M controller performs the role of an A/D converter and delivers digitalised sensor or switching signals to the Master.
- For local overrides for complete opening and closing or for the operating stage V_{max} . The reference variable of the MP-Bus is overridden in this instance.

Operation

Programming unit ZTH-EU

The VRpro volume controller can be adjusted and operated using the ZTH-EU programming unit.

If voltage is supplied to the volume controller and the programming unit is connected with the corresponding cable, it is started and the data of the control component is read out.

Actual values, changes to the settings, e.g. $V_{\text{min}},\,V_{\text{max}}$

Connection to the service port

Connect the ZK4-GEN connection cable (5 m) enclosed with the programming unit to the service port of the VRpro volume controller.

can be displayed. The keyboard can be used for control, e.g. to override the VRpro volume controller.

To make settings or perform operations with the programming unit in MP-Bus operation, terminal 4 at the controller must be provisionally disengaged; the bus operation is interrupted during this procedure.

controller, or to the relevant terminals at the control cabinet. It is advisable to route the connection to an accessible location.

Connection of PC and ZTH-EU programming unit

A comprehensive range of settings can be made using the ZTH-EU programming unit and a PC. The programming unit serves as interface between the VRP-M controller and the PC. A USB cable is supplied with the programming unit.

Order data

VRpro	
DN size	
100 / 125 / 160 / 200 / 250 / 315 / 400	Duct silencer
Control components	(attachment on site)
Actuator: Sensor:	SRC 600 (up to DN 315)
- Standard speed actuator 300 Pa dynamic 3DN	SRC 900
- High speed actuator 300 Pa dynamic 3DQ	\Rightarrow see pages 5 and 17
- Spring return actuator 300 Pa static 3SN	
- High speed actuator 300 Pa static 3SQ	
Spring effect for spring return actuator	
- currentless closed NC	
- currentless open NO	
Option: Lip seal	
- with two lip seals LD	
<i>Option:</i> Acoustic insulation variants ⇒ see page 17	
- for on-site insulation BD	
- with acoustic insulation DS	
Operation mode	
- constant (U5 = $0 - 10$ V) K01	
- constant (U5 = $2 - 10$ V) K21	
- 3-stage: 3P	
- variable, 0 – 10 V - Standard - 01	
- variable, 2 – 10 V 21	
- variable, adjustable VA	
- lower limit UG = 0 to 8 V UG =	
- upper limit OG = 2 to 10 V OG =	
Option: Factory presets	
for reference volume [m ³ /h] ¹)	
- constant reference volume V _{const} =	
- minimum reference volume V _{min} =	
- average reference volume V _{mid} =	
- maximum reference volume V _{max} =	
Option: Plant installation height 1)	
values from 0 m to 3000 m $\Lambda H =$	

¹⁾ The volume controllers are preset for a plant installation height of 120 m as **standard** and for:

 V_{const} = 50% V_{nom} ; or for: V_{min} = 25% V_{nom} ; V_{mid} = 50% V_{nom} ; V_{max} = 75% V_{nom}

Other customer-specific factory presettings are possible! The following limits must be observed, depending on the operation mode:

Constant: $V_{\text{limit}} \leq V_{\text{const}} \leq V_{\text{nom}}$

Variable: $V_{min} = 0 \text{ [m^3/h]}$ or $V_{limit} \le V_{min} < V_{max}$ and 30% $V_{nom} \le V_{max} \le V_{nom}$

3-stage: $V_{min} = 0 [m^3/h]$ or $V_{limit} \le V_{min} < V_{mid} < V_{max} \le V_{nom}$

Electronic volume flow controller for constant	t and variab	le	
volume flow rates. Circular design for posi	ition-indepe	n-	
dent installation in circular ventilation due	cts for supp	ly	
and exhaust air ventilation and air condition	oning system	s.	
Duct casing, mounting consoles and damper	blade made	of	
galvanised sheet steel. Centrally supported	l damper bla	de	
for volume flow control with stainless steel	. bearing ax	es	
in special bushings. With peripheral seal	on the damp	er	
blade to shut off the ventilation duct.		_	
Measuring cross made of aluminium acting as	a differenti	al	
pressure sensor. High degree of accuracy thro	oughout enti	re	
volume flow range. The volume flow must be ker	pt constant	at	
variable pressures between 5 and 1000 Pa.			
24 V AC/DC standard actuator/spring return	actuator/hi	gh	
speed actuator with LED status indicators, o	dynamic/stat	ic	
sensor and a controller for analogue and dig	gital commun	i-	
cation via MP-Bus [®] . Constant, variable or 3-s	tage operati	on	
modes, with 0 to 10 V, 2 to 10 V or adjusta	ble.		
Can be used for for higher-level overrides	s to open a	nd	
close the damper blade and for parallel a	ind sequenti	ai	
operation of several volume flow controllers	. With outp	ut	
signal for actual volume flow, with acoustic :	insulation a	na	
sheet metal jacket with lip seals.			
Leak tightness class C for the casing and l	leak tightne	SS	
class 3 or 4 for the damper blade, each	according	to	
DIN EN 1751.			
Pc			
Volume flow: m ³ /h to	m³/h		
Maximum pressure loss:	Pa		
Maximum sound power level			
Flow noise dB(A)			
including SRC duct silencer			
Radiated noise dB(A)			
Manufacturer: WILDEBOER			
Type: VRpro			
Size: DN			
complete with fixings deliver:			
	install:		
pc SRC duct silencer 600 / 900			
	deliver:		
	install:		
pc ZTH-EU programming unit for adjustment			
and operation.	deliver:		
	install:		• • • • • • •

Select texts not highlighted in bold as required!

.

.

.

Installation instructions

Installation instructions are enclosed with the VRup and VRpro volume The operating instructions must also be observed.

• VRup and VRpro are designed for ventilation and air conditioning systems. Suitable air purity is a prerequisite.

- VRup and VRpro volume controllers are adjusted for the entire controllable volume range from V_{start} to V_{nom} and achieve the volume accuracy in this range. Greater deviations may occur at low volume
- For the VRup and VRpro volume controller to work , the oncoming must be extensively undisrupted. Downstream of disruption points (e.g. bends, branches), the straight inlet and outlet sections shown in the examples must be complied with; longer inlet sections may be required for a succession of several disruption points. Otherwise, deviations in the volume must be anticipated.
- VRup and VRpro volume controllers are position-independent. If the VRpro volume controller is mounted in combination with the static sensor VFP-300 with a t orientation to the diagram on the sticker indicating the installation position, this can be compensated for by carrying out a zero point calibration at the sensor.

 \Rightarrow see operating instructions

- VRup and VRpro volume controllers and SRC duct silencers are supplied individually. Assembly on site.
- VRup and VRpro volume controllers are supplied ex works with the damper blade open and with the standard setting or presetting.

 \Rightarrow see pages 13 and 25

 If no system operating pressure is present, the damper blade opens. If the volume increases to the set point, the VRup and VRpro volume controllers start.

 \Rightarrow for limitations see pages 28 to 31

- The actuators are overload proof. Compact, standard and high speed actuators stop and remain in their current position in the event of a power failure. The emergency movement (closing or opening) in spring return actuators is via a spring. In this case, all settings are retained.
- Changes can be made on site with the ZTH-EU programming unit; also on a PC using suitable communication software.
- The factory settings of VRup volume controllers for V_{min}, V_{mid} and V_{max} can be restored if settings are on site.

controllers.

Sound power level inside the connecting duct –

noise – (1)

Size DN 100

Size DN 160

Size DN 200

Observe limitations shaded in grey.

Nomenclature \Rightarrow see pages 4 and 16

VRup/VRpro

Sound power level inside the connecting duct –

Size DN 315

noise -(2)

Size DN 400

_		
Evam	nla	
LAGIII	hie	

	Size	DN 250
	Volume	V = 1200 m ³ /h
	Flow velocity	v _A = 6.8 m/s
	static pressure drop	∆p _S = 260 Pa
Result:	Flow noise	
	Sound power level	$L_{WA} = 63 \text{ dB}(A)$

• The sound power level inside the connecting duct is calculated in the nomograms as an A-weighted overall level L_{WA}.

Corresponding octave sound power levels L_{W-Oct} can be calculated for every size and all operating points using the Wildeboer dimensioning software; also for designs with additional SRC duct silencers.

 With SRC duct silencers, the sound power levels L_{WA} can be reduced by up to 31 dB.

Important: The sound levels indicated in the nomograms are **sound power levels**! The values represent the sound energy introduced into the duct system. They are to be used for acoustic calculations, e. g. when adding sound attenuators.

In other documents, **sound pressure levels** L_p or L_{pA} are often instead of sound power levels. They contain standardised attenuations of up to 18 dB. This distinction must be observed when comparing numeric values. Furthermore, the extent of these attenuations only becomes clear once the ducts, branches and spaces have actually been connected.

Sound power level outside the connecting duct – radiated noise – (1)

Size DN 100

Size DN 125

Size DN 160

Size DN 200

Observe limitations shaded in grey.

Nomenclature \Rightarrow see pages 4 and 16

VRup/VRpro

Sound power level outside the connecting duct – radiated noise – (2)

Size DN 250

Size DN 400

Size DN 315

Example

	Size	DN 250			
	Volume	V	=	1200	m³/h
	Flow velocity	v _A	=	6.8	m/s
	static pressure drop	Δp_{S}	=	260	Pa
Result:	Flow noise \Rightarrow see example on page 29				
	Sound power level	L _{WA}	=	63	dB(A)
Result:	Radiated noise				
	Sound power level 1)	L _{WA}	=	47.5	dB(A)

 The average sound pressure level in the room with the following equipment is

- with acoustic insulation, 26 dB lower
- without acoustic insulation, 8 dB lower

than the sound power levels ${\rm L}_{\rm WA}$ in the nomograms.

However, the acoustic insulation can only achieve the stated values if the connected circular ventilation ducts are sound-proofed (insulated) accordingly.

The sound pressure level can be further reduced by carrying out additional sound attenuation measures on site (suspended ceilings, high degree of room attenuation).

Network your fire protection and significantly minimise the cost of planning, installation and function testing. The Wildeboer-Net BS2 communication system lays all the groundwork for you.

> Additional protection against cold smoke transfer in accordance with VDI Guideline 6010 by closing existing electronic volume flow and pressure controllers via programmable tripping groups.

The BS2-VR-01 module extends the scope of functions to include new options and allows up to four electronic VRE1, VKE1 and MP-BUS-compatible VRup, VRpro and DRpro controllers to be integrated into the Wildeboer-Net BS2 communication system.

> Optimisation of air distribution via adjustment and visualisation of operating parameters, e.g. volume flows at the central BS2-ZB-01 control unit.

Wildeboer Bauteile GmbH

Marker Weg 11 | 26826 Weener | 📞 +49 4951 950-0 | 📾 +49 4951 950-27120 sinfo@wildeboer.de | swww.wildeboer.de

Watch explanatory video or YouTube wildeboer.de/youtube

